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1.0 INTRODUCTION

The General Electric Co. is currently engaged in the Energy Efficient

Engine (E 3) Program under Contract NAS3-20643 to the NASA-Lewis Research

Center. The purpose of the E 3 Program is to develop and demonstrate the

technology for obtaining higher thermodynamic and propulsive efficiencies in

advanced, environmentally acceptable turbofan engines for possible use in

future commercial transport aircraft. The Program involves technology devel-

opment for engine components, including the design of an advanced low-

emissions combustor.

The purpose of the E 3 combustor effort relative to the overall E 3

program is to develop an advanced combustion system capable of meeting both

the stringent emissions and the long-life goals of the E 3, as well as meeting

all of the usual performance requirements of combustion systems for modern

turbofan engines. Aerothermo and mechanical analyses were conducted to define

a design of this advanced combustor. To meet the emissions and performance

requirements an advanced, short-length, double-annular dome combustor design

concept was adopted. To meet the long-life goals an advanced, double-walled,

segmented liner concept using impingement and film cooling was selected. This

design approach was chosen based on the low-emissions combustor design tech-

nology developed in the NASA Experimental Clean Combustor Program (ECCP)

(Reference 2) and the NASA Quiet Clean Short-Haul Experimental Engine (QSCEE)

Program (Reference 3). In these programs it was demonstrated that with the

double-annular combustor design concept, low emissions levels could be obtained

in addition to obtaining the other combustor performance capabilities required

for satisfactory operation of a turbofan like the E 3.

This report summarizes the results of the detailed design and analysis

efforts on the combustion system for General Electric's Energy Efficient

Engine. It includes a general description of the combustion system and repre-

sents the current status of the design.

This report also includes a presentation of the results for technology

development tests carried out during the detail design and hardware procure-

ment phase of the combustor program. These tests included subcomponent as



well as full-annular tests of prototype designs to evolve the current core
engine combustor configuration.



2.0 SUMMARY

The Energy Efficient Engine (E 3) combustor effort was conducted as part

of the overall NASA/GE E 3 Program. The key elements of this five-year effort

included the selection of an advanced double-annular combustion system design

based on technology derived from the NASA/GE Experimental Clean Combustor and

QCSEE Clean Combustor Development Programs. Numerous preliminary and detailed

design studies were conducted in order to define the features of the combus-

tion system design. Test hardware was fabricated, and an extensive testing

effort was undertaken to evaluate the combustion system subcomponents in order

to verify and refine the design. This testing effort included full-scale dif-

fuser model testing to develop diffuser performance, sector combustor testing

to develop acceptable ignition and emissions characteristics, and full-annular

combustor development testing to further develop ignition and emissions charac-

teristics, as well as develop acceptable exit temperature performance. The

technology derived from this component testing effort was incorporated into

the engine combustion system hardware design. This advanced engine combustion

system was then evaluated in component testing to verify that it satisfied the

design intent. What evolved was an advanced combustion system capable of

satisfying all E 3 combustion system design objectives and requirements.

Following completion of this successful component effort, the engine com-

bustion system hardware was delivered to E 3 Evaluation Engineering for incor-

poration into the buildup of the E 3 Combustor Diffuser Nozzle (CDN) assembly

as part of the preparation for core engine testing. As part of the this test-

ing effort, the combustion system will undergo further evaluation of its over-

all performance as an integral part of the E 3.



3.0 DESIGN SELECTION

3.1 OBJECTIVES AND GOALS

The key objective of this program is to design and develop an advanced

combustion system capable of meeting both the stringent emissions and the

long-life goals of the E 3, as well as meeting all of the usual performance

requirements of combustion systems for modern turbofan engines.

As presented in Table I, the E 3 program goals for carbon monoxide (CO),

unburned hydrocarbons (HC), and oxides of nitrogen (NO x) emissions are equiva-

lent to the current requirements specified by the Environmental Protection

Agency (EPA) for Class T2 (rated thrust greater or equal to 89 kN [20,000 Ib

thrust] subsonic application) aircraft engines newly certified after 1981

(Reference 4).

Table I. E 3 Program Emissions Goals.

EPA 1981 Standards for Newly Certified Engines

Carbon Monoxide (CO)

Hydrocarbons (HC)

Nitrogen Oxides (NOx)

Smoke

Ib pollutant 3.0

per I000 ibf 0.4

- hrs per cycle 3.0

SAE Smoke Number 20.0

Revisions to EPA standards have been finalized. These revised standards

impose a reasonable emission requirement for HC's effective after 1984. How-

ever, the CO and NO x requirements are obviated by the revised standards.

Therefore, the E 3 program emissions goals are much more challenging than the

goals imposed by the final EPA standards. The E 3 combustion system also must

produce an invisible exhaust plume which corresponds to an SAE smoke number of
20 or lower.
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The key combustor performance goals for the E 3 program are presented in

Table II. Most of the current conventional combustor designs developed by

General Electric already provide performance levels generally equal to or

better than the goals established for the E 3 combustor.

Table II. E 3 Combustor Performance Goals.

• Combustion Efficiency at SLTO (%) 99.5 (Min.)

• Total Pressure Drop at SLTO (%) 5.0 (Max.)

• Exit Temperature Pattern Factor at SLTO 0.250 (Max.)

• Exit Temperature Profile Factor at SLTO 0.125 (Max.)

• Altitude Relight Capability (ft) 30,000 (Min.)

• Ground Idle Thrust (% of SLTO) 6.0 (Max.)

The E 3 combustor life requirements are summarized in Table III. General

Electric design standards require that all combustor designs meet twice the

technical life goals in order to assure an adequate design margin. Thus, for

technical life goals of 9,000 cycles to repair, the GE design standard requires

a design with 18,000 cycles predicted capability. It is observed from Table

III that E 3 combustor life goals represent a significant advancement over

current GE combustor life goals.

Table III. E 3 Combustor Life Goals.

Hours Fli_ht Cycles

• Hot Parts

- First Repair 18,000 9,000

- Total 36,000 18,000

• Cold Parts

- Total 36,000 36,000

Current Goal for CF6-50 Rolled Ring Combustor, 3000

Cycles Before First Repair



3.2 DESIGN APPROACH

To meet the emissions goals and other performance requirements of the E 3,

an advanced short-length, double-annular dome combustor design concept was

chosen for the E 3 combustion system. A cross section of the E 3 combustor

design and some of its key features are shown in Figure I. This combustor

concept is based on the technology developed in two NASA/GE combustor programs

conducted prior to the start of the E 3 program.

The NASA/GE Experimental Clean Combustor Program (ECCP) involved the design

and development of a CF6-50-sized double-annular dome combustor. This program

was directed toward developing a large-size combustor design with very low CO,

HC, and NO x emissions (compared to a conventional CF6-50 combustor design)

over the range of operating conditions of a modern high pressure ratio turbo-

fan engine.

The NASA/GE QCSEE Clean Combustor Program involved the design and develop-

ment of a double-annular dome combustor as part of the Quiet Clean Short Haul

Experimental Engine (QCSEE) Program. This program was similar to the NASA/GE

ECCP except that the QCSEE combustor is much smaller and more compact than the

CF6-50 combustor design in Figure 2. But in order to meet the challenging NO x

emissions goals of the E 3 program, the combustor design was made shorter and

more compact than the design evolved in the QCSEE program. This comparison is

presented in Figure 3.

To obtain extremely low CO and HC emission levels at ground idle and low

NO x emission levels at high power conditions requires a staged combustion pro-

cess. Only the outer dome is fueled at low power settings, providing a rich

combustion zone for rapid consumption of the CO and HC emissions, while at

high power settings both domes are fueled and designed for very lean combus-

tion zone operation. This lean combustion is accomplished for the most part

by introducing large quantities of airflow into the inner dome annulus. The

introduction of these large quantities of airflow into the combustion zone

severely limits the availability of air to perform the other aerodynamic

functions.
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To meet the life goals of the E 3 combustor program, studies of various

liner configurations were conducted to identify a design that would provide

the required long-life characteristics. These studies were devoted to the

analysis of advanced film plus impingement-cooled liner designs. Such a

design concept features a two-piece liner construction (a film liner) and an

impingement liner. An illustration of this advanced liner design is shown in

Figure 4. A preliminary analysis of an advanced machined ring film plus an

impingement-cooled liner design strongly indicated it would not satisfy the

E 3 technical life goal of 9,000 flight cycles to first repair. Because of

the uncertainty of meeting E 3 life goals with this liner design concept, a

segmented version of the liner design approach (the shingle liner) was evalu-

ated. This even more advanced liner design concept has been developed espe-

cially for applications with unusually high-peak combustor liner metal tempera-

tures, as well as for long life.

The desirable features of using a shingle liner approach are summarized as

follows:

• Segmented axially and circumferentially

• Reduced stress

• A 360 ° support structure carries the mechanical loads

• Maintainability

• Life >105 cycles

• Cooling levels consistent with NO x requirement

• Required for growth engine cycle.

This liner design approach will reduce the thermal stresses in the liner

material because the hot-film liner is segmented, thus producing longer life

through both the low stress design and the ability to use higher temperature

alloys. This advanced "shingled" cooling liner design concept, in conjunc-

tion with the drastic short length of the combustor design, is projected to

result in the requisite long-life objectives of the E 3 program, but within

the cooling flow limitations necessary for the E 3 NO x emission level goals.

I0
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4.0 AERO DESIGN

4.1 REQUIREMENTS

The major emphasis in the combustion system design is directed toward

meeting the technically challenging emissions and life goals of the program.

In addition, the combustion system must provide the performance characteristics

required for operation of a typical modern turbofan engine.

The performance parameters generally considered most important in a com-

bustion system are shown in Figures 5 and 6. It should be noted that not only

is high combustion efficiency required at sea level takeoff (SLTO) conditions

for this design, but such efficiency must be maintained at a level greater

than 99.0% at idle in order to meet the CO and HC emissions goals of the pro-

gram.

In order to satisfy the combustion system performance requirements and to

meet the stringent emissions goals specified for the E3 the selection of an

advanced combustor design approach was required.

• Combustion Efficiency (Minimum)

• Total Pressure Drop (Maximum)

• Exit Temperature Pattern Factor (Maximum)

• Exit Temperature Profile Factor (Maximum)

• Ground Start Ignition to Ground Idle Within 60 Seconds

• Stable Combustion Within the Flight Envelope

• Altitude Relight Capability up to 9.15 km (30,000 ft)

• Carbon-Free Operation

• No Resonance or Starting Growl Within the Flight Envelope.

99.5%

5.0%

0.250

0.125

Figure 5. Performance Requirements.
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4.2 KEY STUDIES

A large number of design studies were conducted during the process of

evolving the preliminary design of the combustor and refining the design fea-

tures into the detailed core engine design.

The four major study areas were related to detail component and systems

design which included aerodynamic analysis, ground start sequence, fuel staging

modes, and estimates of the emissions levels to be expected from the core,

ICLS, and FPS engine designs.

The major objectives of the aerodynamic analysis were to define a desira-

ble combustor flowpath within the constraints of the engine envelope and to

develop the required distribution of airflow within the flowpath to meet all

of the combustor performance, emissions, and life objectives.

4.2.1 Cycle Studies

One of the key inputs in evolving the airflow distribution was the engine

operating cycle. Two of the most important operating modes are ground idle

and sea level takeoff (SLTO). Both of these cycle conditions are utilized in

the EPA landing/takeoff (EPA-LTO) cycle to calculate emissions performance;

sea level takeoff is generally selected as the combustor design point for com-

bustor sizing and analysis. Of the four EPA-LTO conditions, ground idle is

extremely important for a staged combustor design like the double annular,

since the pilot stage dome design is based primarily on this operating condi-

tion. The CO emissions levels are highly sensitive to the pilot dome equiva-

lence ratio at this condition (see Figure 7). However, ground idle combustor

inlet conditions may vary as the engine cycle is refined, as shown in Table

IV. For this reason, several iterations on airflow distribution may be

required to satisfy the requirements of the emissions goals, establish cooling

airflows in order to maintain metal temperatures, and select combustion zone

airflows to meet performance. The airflow distribution evolved for the base-

line design is compared to airflow distributions finally evolved for the

core engine (Figure 8). This comparison illustrates how significantly the

aerodynamics can change.
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Table IV. E 3 FPS Design Cycles.

Ground Idle (6% F N) Proposed Idle Cycle (Data)

PDR (7/78) IDR (4/79) DDR (8/81)

T 3 - K (° R) 485 (873) 517 (931) 497 (894)

P3 - MPa (psia) 0.40 (58) 0.43 (62) 0.43 (63)

FAR 4 0.012 0.0141 0.0123

SLTO (100% F N)

T 3 - K (° R) 814 (1465) 815 (1467) 815 (1467)

P3 - MPa (psia) 3.01 (438) 3.02 (439) 3.02 (439)

FAR 4 0.0244 0.0244 0.0245

4.2.2 Diffuser

One of the key components in the combustion system that directly affects

combustor as well as engine performance is the diffuser. The diffuser accepts

air from the compressor discharge and directs it to the combustor. The key

design requirements for the diffuser are as follows:

• Positive flow distribution

• Stable flow, separation-free

• Short length

• Low pressure losses

• Bleed airflow capability

The design of the combustor diffuser depended on the selection of a turbine

cooling air extraction configuration, definition of the diffuser wall con-

tours, and modeling of the diffuser system aerodynamics. The design approach

selected was a dual-passage step-diffuser system which provides for the large

area change between the compressor discharge and the double-dome height of the

combustor. This diffuser design is defined as a split duct.

17



Twoapproaches for extracting turbine cooling air from the compressor

airstream were considered for the split-duct diffuser design. The configura-

tions investigated were leading edge and trailing edge designs. The leading
edge approach, which extracts turbine cooling air from the centerline location

of the compressor flowpath, offers the advantage of positive total pressure

feed and lower air temperature. The airflow is metered through a circumferen-
tial slot located at the leading edge of the splitter vane. The airflow is

then diffused into the strut cavity and routed through the hollow strut pas-

sage into the cooling circuit. Since the flowmetering is done at the leading

edge slot, extremely accurate dimensional control is required. The leading

edge design also has higher frontal blockage which results in a higher OGV

Machnumber that requires longer diffuser passages.

The trailing edge approach has positive design features such as dirt

separation, enhanceddiffuser stability, and good mechanical strength. How-

ever, the trailing edge design depends on static pressure feed and has slightly

higher cooling air temperatures due to mixing in the prediffuser passages. In

this design the airflow is metered through circular orifices in the discharge

base of the splitter vane and dumpsinto the strut cavity. Such an approach

permits accurate metering and easy modification of bleed flow quantity.

Although the leading edge design does offer the advantage of slightly
improved sfc due to the lower cooling air temperature and higher combustor

inlet temperature, the disadvantages of increased hardware cost, cooling air

metering dimensional sensitivity, and rework difficulty were considered criti-

cal risks and led to selection of the trailing edge approach shown in Figure 9.
Additional design studies using conventional design practices (such as the

Stanford Diffuser Separation Correlations) and analyses using the General

Electric CompressorAxisymmetric Flow Determination (CAFD)computer program

were conducted on the prediffuser design to determine the passageMachnumbers
and pressure distribution. The configuration analyzed included the effects of

blockage from the 30 prediffuser struts and an estimated compressor discharge
airflow radial profile. These analyses provided information concerning the

velocity characteristics and permitted selection of the prediffuser wall
coordinates. After the coordinates were defined, the system was analyzed to

determine the expected performance for comparison to the design requirements.

18
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The results predicted a mass-weighted total pressure loss of 1.5 percent. No

major problem areas were identified for the diffuser; therefore, the identi-

fied design was transmitted to General Electric's Corporate Research and

Development Center for fabrication of a water table model and a full-annular,

full-scale aerodynamic model.

4.2.3 Fuel Nozzle

Several studies dealing with fuel nozzle hydraulic and heat tranfer char-

acteristics were carried out. The fuel nozzie design features and design

requirements are shown in Figure i0. The nozzle hydraulic system features a

primary and secondary duplex fuel nozzle system in both the pilot and main

stage systems. The primary system provides excellent fuel atomization at

low-power operating conditions where the combustor inlet environment is less

favorable for combustion. At high power, where combustor inlet conditions are

favorable, the secondary system provides excellent fuel atomization and the

desired flow capacity to achieve full engine power. The valve mechanism

mounted above the flange provides the fuel metering schedule between primary

and secondary nozzle flow and is cooled by fan air to reduce thermal problems.

A major design effort was directed toward heat transfer analyses of the

fuel nozzle designs for the core and ICLS systems. These design studies were

conducted to assure that no fuel gumming or carboning would occur during the

demonstrator program to be conducted with ambi@nt fuel temperatures at sea

level conditions. Additional studies were conducted on the FPS system where

fuel inlet temperatures as high as 408 K (734 ° R) would be expected and where

the nozzles would be exposed to high heat loads with low fuel flows that exist

during high altitude operation.

The heat loading conditions selected for the design of the annular test

rig fuel nozzles were simulated SLTO conditions. The estimated critical tem-

perature range for incipient carbon formulation is 422 K (760 ° R) to 450 K

(810 ° R). Without any insulating features, the fuel wetted wall temperatures

of the test rig nozzle assemblies were expected to exceed 478 K (860 ° R). This

could result in a marginal design. The wall temperatures are reduced markedly

to levels well below the critical limit with the addition of insulating tubes

20
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in the fuel passages. This design feature was incorporated into the annular

test rig fuel nozzle assemblies.

The core engine and ICLS fuel nozzle design was analyzed in a similar

fashion. However, the core and ICLS design featured an external heat shield

as well as fuel passage insulating tubes. The heat load conditions selected

for this design study were the ICLS SLTO conditions. As expected with ambient

inlet fuel temperatures, the wall temperatures were notably low. But as shown

in Figure Ii, at higher fuel inlet temperatures the wall temperatures approached

the critical limit. Based on these results, a more rigorous analysis was con-

ducted on the FPS design where more severe operating conditions might exist.

The analysis indicates that the worst heating condition is near the flange

where the heat shield is in contact with the stem and forms a heat conduction

path. The analysis showed that the tube-wall temperature can be reduced sig-

nificantly if the original fuel tube insulating gap is increased from 0.020 to

0.051 cm (0.008 to 0.020 inch). As long as the duration of exposure to the

maximum inlet fuel temperature of 408 K (734 ° R) is short, carbon buildup or

fuel gumming is expected to be negligible.

Because the combustor was in a stage of development where the ootimum

proportion of fuel between the pilot dome and main dome had not yet been deter-

mined, it was necessary to provide a degree of flexibility in the amount of

fuel that could be scheduled to each system without exceeding the flow capac-

ity of the engine fuel system. The fuel system was oversized to incorporate

this flexibility. By installing a fixed orifice in the main stage fuel system,

the fuel flow split between the pilot stage and main stage could be adjusted

to provide the desired flow split. Following completion of the core engine

combustor component test program, the hydraulic characteristics for the two

fuel systems will be selected and the appropriate orifice size will be

installed.

4.2.4 Ignition System

One additional design study conducted was related to the ICLS ignition

system. The mounting provisions for the ICLS ignition system require that the

igniter lead be routed underneath the core cowl to connect the spark igniter
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to the ignition exciter box. The core cowl region is generally purged with

fan air at about 478 K (860 ° R). But a more severe condition is expected to

exist on a shutdown from maximum power where casing temperatures heat the core

cavity air to higher levels than the fan purge air. A transient heat transfer

analysis was conducted based on measured core cavity temperature responses in

a CF6-50 on shutdown from maximum power. Based on these analyses, using the

E 3 core cavity geometry, a peak air temperature of 606 K (1109 ° R) would be

expected during soak back. The Teflon lining of the ignition lead will with-

stand 700 K (1260 ° R) without material damage; thus, it was concluded that a

standard lead design without auxiliary cooling would be adequate.

4.2.5 Startin$

One of the major, most intensive studies conducted on the combustor sys-

tem dealt with obtaining an acceptable ground start ignition sequence for the

E 3 engine equipped with the parallel-staged combustor design. The key high-

lights of this effort are presented in Table V. E 3 ignition requirements are

typical of those used in conventional commercial aircraft engine applications.

These requirements were (I) stable ignition and propagation, (2) 60-second

accel to idle, and (3) start free of stall and noise. A substantial amount

of experience in starting engines equipped with a parallel-staged combustor,

such as the E 3, had been obtained in the NASA/GE Experimental Clean Combustor

Program (ECCP) conducted earlier. As shown in Table VI, the CF6-50-sized

parallel-staged design tested in the ECCP demonstrated highly satisfactory

experience for engine ground starts.

The key difference between the previously successful ECCP design and the

E 3 design centered around the ground-start compressor bleed flows required to

prevent compressor stall and the associated combustor fuel-air ratios and their

impact on turbine metal temperatures. Figure 12 shows that the initial esti-

mates of the required starting compressor bleed resulted in very high combustor

fuel-air ratios. These high overall fuel-air ratios, coupled with the tip

peaked exit temperature profiles (Figure 13) associated with fueling only the

pilot-stage dome during ground start, resulted in unacceptable turbine metal

temperatures - particularly in the uncooled low pressure turbine hardware.

In order to attenuate the temperature profiles associated with operation of
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Table V. Chronology of E 3 Starting Studies.

January 1978 - October 1978

December 1978 - September 1979

February 1978 - March 1980

January 1980 - May 1981

May 1981 - Present

Combustor Design

- Original Concept

- Pilot-Only Ignition Through Ground Idle

Engine Start Studies Initiated, Model Pre-

dicts High T4. I Max. with Pilot Only

Fueled

Combustor Ignition Studies Conducted to

Develop Capability to Start Engine with

Both Domes Fueled

Dev. Comb. Activity Directed at Evolving

Satisfactory Ignition with Both Domes

Fueled from Light Off Through Ground Idle

Start Studies Resumed with New Component

Data Input That Indicate Pilot-Only Start

Will Be Satisfactory

Table VI. Starting Background.

CF6-50 Double-Annular (ECCP)

- Staged Combustor

- Extensive Component Test

- Engine Tested

Staging Procedure

- Ground Start to Approach Power (Pilot Only)

- Above Approach (Pilot and Main)

Starting History

- Satisfactory Main Stage Ignition in Component Tests

- 56 Successful Engine Starts

One Unsuccessful Start (Aborted, Exceeded T4. 9 Limit)
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the pilot stage only during ground start, an alternative fueling mode was

evolved. This alternate approach involved staging the combustor from the

pilot-only mode to pilot and main during the ground start sequence in order

to divide the fuel between both pilot and main stages, thereby providing

a flatter exit temperature profile similar to that shown in Figure 13. Since

the main stage was originally intended only for operation at high power oper-

ating modes where combustor inlet conditions are more favorable for ignition,

several approaches were considered: (I) primary-secondary fuel nozzle,

(2) alternate fuel nozzles fueled (subidle), and (3) rich domes (reduced main

dome airflow). This redirection in operating requirements for the combustor

and, in particular, the main stage combustion system resulted in major changes

to the design. These design changes are outlined below.

• Duplex fuel nozzles in pilot and main dome

• Complex control staging at ignition

• Reduced main dome airflow

• Crossfire tube improvements

As shown in Figure 14, with the lean main stage dome evolved as the base-

line design, the main stage dome velocities are considerably higher than in

the pilot stage dome. Even with major reductions in airflow designed to obtain

a rich main stage dome configuration, the dome velocities remain high due to

the smaller annulus area of the main dome. Figure 15 shows that fuel staging

becomes much more complex, requiring significantly more manipulation of the

pilot and main stage fuel flows during the start sequence. The undesirable

features of the rich dome design approach are outlined in Table VII. Of par-

ticular concern were the higher NO x emission levels expected with the rich

main stage dome design. However, the greatest concern was centered around

the capability to start the engine satisfactorily without sustaining any dam-

age to the engine components. Therefore, combustor development activity was

redirected toward evolving a rich main dome configuration. During the first

quarter of 1981, key component test results were obtained relative to the E 3

compressor and turbine low speed performance. Utilizing this most recent com-

ponent test data, the engine starting analysis was updated. The key points of

this study are presented in Table VIII. The results of the study were:
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Table VII. Adverse Impacts of Pilot and Main Stage Ground

Start Ignition.

Increased Fuel Staging Complexity

Additional Control Logic Required

More Complex Main Stage Fuel Nozzle

- Added Hydraulic Features (Primary Orifice)

- Additional Fuel Tube Insulation

- Larger Envelope (Heavier)

- More Expensive

Richer Main Dome Operation at High Power

- Increased NO x Emissions

- Increased Liner Temperatures

Table VIII. Revised Engine Start Analysis.

Start Model Updated 5/81

- New Compressor Subidle Representation Based

on i to I0 Test Results

- Improved Low Speed Turbine Efficiency Levels

Based on E 3 Turbine Component Tests

- Lower Bleed Flows Required

Improved Profile Mixing Through High Pressure

Turbine
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• Satisfactory 60-second ground start

• 10% stall margin below 65% N c

• Maximum average T4. I at 1228 K (1750 ° F) as compared to previous

1422 K (2100 ° F)

• Satisfactory ground start obtained operating on pilot only

The key finding of this updated study was that considerably less compressor

bleed was required during start than had originally been determined. As a

result, the combustor overall fuel-air ratios encountered during start were

greatly reduced (Figure 16).

A comparison of the study results for the two operating modes for the

combustor during ground start is summarized in Table IX. Based on these

results, it was concluded that engine ground start with the pilot-stage-only

fueled was the preferred mode of operation due to the very favorable ignition

characteristics of the pilot dome and the significantly reduced complexity

required for the control system. These conclusions obtained from the starting

studies led to another redirection in the combustor development effort back to

the original lean main stage dome design, but considerable development effort

had been expended in designing a rich main stage dome.

"Table IX. Ignition Study Results.

(Pilot Stage Only Versus Both Stages Fueled)

Light-Off to Ground Idle in 60 Seconds

- Both Approaches Meet Objective

- Both Domes Fueled Require More Complex/Heavier Fuel System

and Control Logic

Stable Ignition and Flame Propagation

- Pilot Stage Design Most Amenable to Good Ignition and Flame

Propagation

- Both Domes Require Crossfire to Main Stage

Stall and Growl-Free Operation in Subidle Range

- Pilot-Stage Only Provides Most Potential for Growl-Free Operations

- Both Domes Fueled Provide Most Potential for Stall-Free Oper-

ation Due to Lower/More Uniform Combustor Exit Temperature

32



o_ L•_... .

C_

C

_/_ _-_
I 1

I I I
o

o

o

o

o
,-I

o
.,-I

o

o
,.-4

o
ED

0

C

C
_U

0_

o
_D

0

C
0

.H

O_

0
ED

0

0

,I I I
o"1 ¢_1 ,--4
o o o

OT_e_ _TV-Tan_ ]o_nqmo3

33



4.2.6 Emissions

One of the key concerns during the preliminary and detail design phases

was the predicted emissions levels of the E 3 combustor design and how these

would compare with the program goals. The key considerations affecting the

results of the E 3 combustor emissions study effort were: (i) previous

development experience on CF6 ECCP, QCSEE, and LOPER; (2) E 3 cycle condi-

tions; (3) E 3 emissions adjustment relationships. GE has acquired consider-

able experience in designing advanced low emissions combustors. The NASA/GE

ECCP involved development of an advanced parallel-staged full-annular combus-

tor sized to fit a CF6-50 engine. The NASA/GE QCSEE Program also involved an

advanced parallel-staged combustor similar in size to an P IOI/CFM56 combustor

which was developed in sector combustor tests. The NASA/GE LOPER Program was

directed toward obtaining ultralow CO and HC emissions at low power operating

conditions in a single-annular design. These single-annular designs utilized

such advanced concepts as recuperative cooled liners, hot wall liners, and

catalytic combustion.

The ground-idle combustor inlet conditions for these development combus-

tors are compared to the E 3 combustor ground-idle conditions in Table X. As

observed, the E 3 combustor inlet conditions are more favorable for reduced

levels of CO and HC emissions than the previously tested ECCP, QCSEE, and

LOPER development combustors which have already demonstrated low CO and HC

emissions in their respective programs. For that reason, it was expected that

the E 3 combustor design would have the potential for low CO and HC emissions

at low power operating conditions.

34

QCSEE

CF6 ECCP

LOPER

E 3

Table X. Ground Idle Cycle Comparison.

T3 P3

K (° R) MPa (psia) f/____a

414 (715) 0.25 (36) 0.016

429 (772) 0.30 (43) 0.0110

422 (760) 0.30 (44) N/A

197 (894) 0.43 (63) 0.0123

VRef

m/s (fps)

15 (49)

18 (69)

23 (75)

15 (48)
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In order to estimate the expected emissions levels for the E 3 combustor,

adjustments were made to an existing data base to determine the impact of com-

bustor inlet parameters and combustor aero design features on emissions. The

relationship used in making the E 3 combustor estimates are shown in Table XI.

These key parameters affecting CO and HC emissions at low Dower are inlet pres-

sure, bulk residence time, and inlet temperature. The key parameters affecting

emissions at high power, where NO x emissions are of primary concern, are

inlet pressure, inlet temperature, bulk residence time, inlet air humidity, and

fuel split between pilot and main stage domes. Applying these relationships to

the data base for the ECCP, QCSEE, and LOPER, the CO, HC, and NO x emissions

estimates were generated for the E 3 combustor (see Table XII). With the more

favorable combustor inlet parameters of the E 3 cycle, the expected CO and HC

emissions levels of the E 3 were estimated to be below the target level with

margin. The NO x emissions were expected to closely approach the goal for

both designs when the adjustment to residence time is made for the short length

of the E 3 combustor. The similarity of design features and airflow distribu-

tions in the ECCP and QCSEE combustors cause their emissions characteristics

to closely approach those anticipated for the E 3 combustor. However, LOPER

incorporates more advanced state-of-the-art and unique emissions reduction con-

cepts which result in ultralow levels of CO and HC emissions.

Table XII. E 3 Combustor Estimated Emissions.

• Pilot and Main at Approach

• Pilot Only at Ground Idle

6% Idle Target Level Goal

EPAP CO 1.9 2.5 3.0

HC 0.05 0.30 0.4

NO x 2.7 2.7 3.0

Smoke - SN 15 16 20

ib/1000 ib Thrust-hour/Cycle
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Based on these predicted levels, it was expected that the E3 combustor

would meet the COand HCemissions goals for the program with both the pilot

and main stages fueled at the approach (30%FN) operating condition. With

the favorable cycle conditions at low power and the short residence time asso-
ciated with the short combustor length, the E3 combustor was expected to

meet all of the program goals with considerable margin, even taking into

account engine-to-engine variability.

4.3 COMBUSTOR DESIGN FEATURES

The key combustor component areas where the design features were expected

to significantly impact performance were the dome swirl cups, fuel nozzles,

and liner dilution holes.

The airblast swirl cup is one of the most important components of the com-

bustor because it atomizes, mixes the fuel and air, and prepares the fuel for

burning in the combustion zone. The design features of the swirl cups for the

E 3 combustor were:

• Axial flow primary swirler

• Counterrotating radial inflow secondary swirler

• Venturi for carbon prevention

• Slip joint between primary-secondary for thermal growth

• Simple mechanical design

The aero features are shown in Figure 17. The key design properties for the

swirl cup are: (i) fuel spray quality, (2) recirculation strength, (3) veloc-

ity through venturi, (4) primary-to-secondary swirler airflow ratio, and

(5) fuel nozzle eccentricity and immersion.

These properties are important because they control combustion zone per-

formance and durability. The swirl cup must provide a stable spray at the

proper ejection angle and the fuel must be well atomized and properly distrib-

uted. The combustor flame is stabilized and seated in the dome by the re-

circulation zone formed by the vortex action of the fuel-air mixture exiting

the swirl cup. The recirculation zone pulls hot exhaust products from the
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Primary

Secondary

Vane Angle

Inlet Angle

Effective Area, cm 2 (in 2)

Venturi Throat Diameter,

cm (in)

Vane Angle

Vane Height, cm (in)

Effective Area, cm 2 (in 2)

Pilot

60 °

23 °

0.92 (0.143)

1.58 (0.623)

80°

0.70 (0.275)

1.38 (0.214)

Figure 17. Swirl Cup Design.

Main

60 °

23 °

0.92 (0.143)

1.58 (0.623)

80°

1.02 (0.400)

1.87 (0.290)
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primary combustion zone upstream into the unburned mixture which helps vapor-

ization and initiation of the combustion process. Becauseof this, the recir-

culation zone must be well controlled to prevent possible combustion instabil-

ity, carboning of the swirl cup components, and/or possible damageto combustor

domecomponentsdue to excessive heating. Oneof the swirl cup features that
controls recirculation in the E3 design is the emissions reduction sleeve. As

seen in Figure 18, the exit angle of the sleeve controls the amountof recir-
culation flow. The sleeve exit angle selected for the E3 swirl cup is 90° .

Another important design feature of the swirl cup is the venturi. The venturi

prevents hot combustion gases from reaching the fuel nozzle face and creating

carbon deposits. A parametric development study was conducted earlier as part

of the ECCPin order to determine the key design values of the venturi which
would prevent carbon buildup. The results of this study are shown in Figure

19. Using this design criteria, the E 3 swirl cup venturi parameters were

selected to assure that carboning of the fuel nozzle or venturi surfaces would

not occur.

A unique feature of the advanced film-impingement liner construction

selected for the E 3 combustor is that dilution air can be introduced either

at full liner pressure drop or at a lower pressure drop level. These two

dilution designs are illustrated in Figure 20. Figure 21 illustrates that

these concepts provide different jet penetration characteristics. This pro-

vides additional design flexibility when trying to control the exit tempera-

ture profile characterisitcs of the combustor.

The E 3 combustor fuel nozzle is similar in design to the type used in

conventional combustion systems, except that it provides fuel for the pilot

and main stage systems. The hydraulic flow schedule is shown in Figure 22.

The combustor operates on the small-size primary system to assure high nozzle

pressure drop and good atomization in the low engine speed region where com-

bustion conditions are most severe. The primary systems of the pilot and main-

stage nozzles are identical. Therefore, when both primary systems are opera-

ting, the fuel flow is split equally between the pilot and main stage domes.

At engine speeds above ground idle, the metering valve opens and permits fuel

into the high-flowing secondary system. At these more favorable inlet condi-

tions, where combustor inlet pressures and temperatures are higher, the larger
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• Ambient Test Conditions

• Pressure Drop = 5.0%

Target Level

0
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Sleeve "Included Angle", degree

Figure 18. Recirculation Flow Compared to Sleeve "Included Angle".
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Figure 20. E 3 Dilution Thimble Designs.
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spray droplets from the secondary system are more easily vaporized. The main

stage total flow is about twice that of the pilot above the secondary cut-in

in order to bias the fuel flow to the lean main stage dome at high-po_r oper-

ating conditions for NO x emissions control. However, the exact flow split

has not been selected. As a result, the fuel systems were oversized to pro-

vide some flow split flexibility. The pilot and main fuel systems are sup-

plied from a common line; consequently, they operate from a common fuel flow

and pressure source. By installing a restriction in the main or pilot-stage

fuel inlet line, the flow split can be shifted by inducing additional pressure

drop into that system. As an example, if the pilot stage fuel system were

operating at 2.41MPa (350 psi), and if a restriction were added to the main

supply line to provide an additional pressure drop of 0.35 MPa (50 psi), the

resulting flow curve would look like the one shown in Figure 22 for the 40%

pilot-to-total flow split. The operating characteristics of the pilot and

main stage fuel systems across the E 3 FPS standard day operating line are

presented in Figure 23.
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5.0 MECHANICAL DESIGN

5.1 REQUIREMENTS

The E 3 combustor mechanical design life goals (Figure 24) are consistent

with the engine technical requirements. The combustion system hot parts were

designed to a cyclic life capability of 9,000 cycles to first repair, with an

ultimate life of 18,000 cycles for these parts. Based on the typical engine

mission of two-hour duration, the cyclic life requirement translates to 18,000

hours to first repair with an ultimate life of 36,000 hours.

• Life Goals

Operatin_ Time

Hours Cycles

To First Repair 18,000 9,000

Total Life 36,000 18,000

• Maximum Operating Conditions - (Growth Engine)

Inlet Temperature 927 K (1669 ° R)

Inlet Pressure 3.91MPa (567 psia)

Fuel-to-Air Ratio 0.025

Figure 24. Combustor Mechanical Design Objectives.

5.2 GENERAL DESIGN FEATURES

Figure 25 shows the assembled E 3 combustor. A cross section of the com-

bustor design was previously shown in Figure I. The E 3 combustor design fea-

tures a double-annular dome with a common swirl cup design used in each dome.

A centerbody structure separates the outer pilot dome from the inner main stage

dome. Fuel is introduced to the combustor through 30 dual-tip fuel nozzles.
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Figure 25. Assembled E 3 Combustor.
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Each fuel nozzle features completely independent fuel metering for each dome.

The combustor liners utilize a double-walled shingled liner concept to pro-

vide long life. The combustor is supported at the upstream end by 30 support

pins. These support pins transmit all the mechanical force loads from the

liners and dome to the outer combustor case. The combustor-turbine interface

is sealed with machined fishmouth seals which accommodate the relative growth

and mechanical stackups between the two components.

The outer casing supports the combustor, fuel nozzles, fuel delivery

system, ignition system, and engine firewall. Ports are provided in the cas-

ing for borescope inspection, compressor discharge bleed, and instrumentation

leadout.

Several design changes were incorporated into the combustor mechanical

design since the preliminary design review. Liner shingle geometry was opti-

mized to a shingle array which featured three axial rows. The shingle edges

were designed with circumferential overlap seals, thereby eliminating 105

leaf seals in the combustor assembly. The selected shingle alloy was X-40.

This high-temperature, cobalt-based alloy provides excellent durability for

the E 3 application. The turbine cooling air filtration screens located at

the combustor aft end were removed in order to be consistent with current

commercial engine design philosophy and to reduce system weight complexity

and cost.

The combustor centerbody was shortened from the original configuration

to provide a more rigid, more readily cooled design. In addition, centerbody

thermal relief slots were incorporated to reduce thermal stress and provide

adequate component life capability.

The materials selected for the combustion system are shown in Figure 26.

Conventional combustor high-temperature alloys, such as Hastelloy-X and X-40,

were chosen for the components that are exposed to hot combustion gases: the

dome, centerbody, shingles and dilution eyelets. Supporting structures, such

as the outer casing and the impingement liners, are made of nickel-based

alloys. The fuel system was fabricated from stainless steel alloys.
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5.3 LINER

Combustor liners utilize a double-walled shingled liner concept similar to

the liners developed in the GE23/ATEGG engine program. The liners consist of

a load carrying 360 ° turning which supports individual heat shields or shingles.

The shingles are segmented axially and circumferentially to reduce stress and

provide long life. The support liner, in addition to supporting the shingles,

provides impingement cooling to the shingle. Figure 27 shows the inner sup-

port liner. All of the cooling and dilution holes in both support liners were

laser drilled. Laser hole drilling of combustors is a new application of this

technology, with savings in both time and cost over conventional hole drilling

methods such as EDM (electrodischarge machining). Figure 28 shows the assem-

bled inner liner.

The E 3 shingle design is similar to the ATEGG/GE23 shingle design. The

GE23 combustor features a cast shingle design. This design background pro-

vided the basis for the E 3 combustor liner design. A comparison between the

GE23 shingle geometry and the E 3 shingle geometry is shown in Table XIII.

One significant difference in the design configuration between E 3 and GE23

combustor shingles is the support foot configuration. A comparison of the two

support foot designs is provided in Figure 29. The E 3 design was optimized

to allow the maximum coolant flow introduction between feet while maintaining

sufficient foot width for mechanical strength. The optimization consisted of

trading off cyclic fatigue life against rupture life capability for the

shingle design.

Another significant difference in shingle design is the method of con-

trolling leakage between adjacent shingles. Figure 30 illustrates the GE23

and E 3 edge seal configuration. The GE23 shingle utilizes individual sheet

metal leaf seals which fit into slots along the edges of the shingle. The

E 3 shingle introduces a novel concept for between-shingle leakage control.

This shingle design has overlapping edges which eliminates the need for indi-

vidual edge seals. The edge leakage flow is controlled by closely dimension-

ing the gap between the overlapping shingle edges. The elimination of the

shingle edge seal does introduce a controlled leakage and a slight penalty in

loss of shingle coolant and slightly increased operating temperature. Figure

31 shows the effect of shingle edge leakage on shingle operating temperature.
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GE23

Outer Liner

Inner Liner

E 3

Outer Liner

Inner Liner

W_ S_

cm (in.) cm (in.) W/S

0.58 -_ 0.66 0.33 -_ 0.38 1.8

(0.23) + (0.26) (0.13) + (0.13)

0.51 -_ 0.66 0.31 -_ 0.38 1.9

(0.20)-_ (0.26) (0.12) -_ (0.15)

0.51 0.51 1.0

(O.20) (0.20)

0.46 + 0.56 0.46 + 0.56 1.0

(0.18)+ (0.22) (0.18) + (0.22)

_o_,_0_-+_+_+_,oo__0_

Figure 29. ES/GE23 Shingle Support Foot Design Comparison.
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GE23 Shingle
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0. 127

(0.050)

t

[_------0.025 (0.010)

JO.191 L I _ _,_

<o.o7_) _! "_

_o. 152 (0.060) Cold

E 3 Shingle

Advantage: Elimination of 105 Parts

Figure 30. ES/GE23 Shingle Edge Seal Configurations.
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• Dimensions Are in cm and (in.)
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The maximum increase in metal temperature due to this leakage is on the order

of 19 K (34 ° F). The E 3 design can accommodate this metal temperature in-

crease penalty in light of the significant reduction in component pieces and

the easier liner assembly achieved with the overlappin_ shingle design.

Another combustor liner feature similar to the GE23 combustor design is

the liner dilution eyelet. The liner dilution eyelet is supported by the sup-

port liner. As shown in Figure 32, a coannular gap is utilized at the shingle

interface to avoid interference between the "hot" shingle and the "cold" eye-

let during engine operation. The aft portion of the annular gap flow is

directed onto the shingle with a film restarter lip in order to restore the

dilution jet stripped cooling film. This technique was developed on the ATEGG

combustors and has demonstrated significant shingle temperature reduction in

the areas downstream of the dilution holes.

The combustor liner design is supported with extensive heat transfer and

stress analysis. Good heat transfer data are essential to ensure reliable

stress and life predictions. The shingle heat transfer analysis utilized the

two-dimensional heat transfer model of the inner liner Panel I shingle. The

shingle stress analysis was carried out by using a three-dimensional finite-

element computer analysis.

The combustion liner heat transfer analysis techniques employed in the

E 3 liner analysis are consistent with standard GE liner heat transfer design

guidelines. Both average and hot-streak liner temperature predictions were

made for the E 3 combustor. Similar predictions have been generated for the

ATEGG engine combustor family with good agreement obtained with measured

engine data.

Figures 33 and 34 show the E 3 inner and outer liner cooling flow distri-

butions compared to the GE23 combustor and CF6-50 (ECCP) double-annular com-

bustor. The GE23 represents prior shingle liner design experience, and the

CF6-50 is the only prior GE double-annular engine combustor design. As shown,

the E 3 inner liner cooling rate is comparable to the other combustors, except

at the forward end of the CF6-50 combustor where higher coolant flow was

required to cool a hot panel. The outer liner cooling rates are very similar

in all three designs.

58



ORIGrN._L PfiC_ |g

OF POOR QUALITY

2

t Reduces Leakage

___._--'_ Air,_rou,,_..u_r _a_
_ w Feeds "Film Restorer"

Figure 32. Dilution Eyelet Design.

59



o
¢q

lb/sec

Cooling Rate, ft 2 atm

o t_ o
_4 e-4

c; d g

ORIGINAL PAGE 19

OF POOR QUALITY

o

o
O

\
I

6
I
I

I
0
I

/

I

/

o_

0
oo

o
t_

0

o

h

o.
°e.I

0

0

0

0

0

0

..,,-i

o
,-I

0
0

to

6O



lb/sec

Cooling Rate, ft-_-_atm

o
0

Pd

¢q rd _ o

0

_X

I,

i\
+ '

\ ,

I
/ ,

I <t!

? ,

S _

m:l.e guz +e:l.elt _UTIOOD

U'3
0,1

c;

ORIGINAL PAGE iS

OF POOR QUALITY

o

o

o

O
00

O
t',-

O

0

,_

m

o

0

0

q)

,H

4

o %

_ g

0

0

61



Based on the chosen liner cooling rates, a prediction of operating tem-

perature was made for each panel. Figure 35 shows the predicted baseline and

growth overhang temperature levels for each panel. These results are based on

a one-dimensional hot streak calculation which was conducted to identify the

life-limited shingle. The inner liner forward panel was identified as the

hottest liner region and, therefore, the life-limited shingle. This shingle

location was selected to model for further detailed heat transfer, stress, and

life analyses.

Two-dimensional heat transfer studies were conducted to identify the max-

imum operating temperatures at shingle locations other than the overhang.

Figure 36 shows the temperatures along the life-limited shingle at growth

engine hot-day takeoff conditions. Both average and hot-streak temperature

distributions were predicted. As shown, the peak shingle temperature distri-

butions were predicted. Also shown, the peak shingle temperatures occur in the

region of the support foot with the coolest temperature at the forward end

where the coolant film is introduced. These studies indicated a maximum

shingle temperature of 1283 K (1850 ° F) for growth engine operation. The

growth engine takeoff roll condition exhibits a higher combustor inlet tem-

perature. However, the reduced pressure levels result in lower liner heat

loads and subsequently lower metal temperatures than the growth engine take-

off condition. Similar heat transfer studies were conducted at the baseline

engine and growth engine takeoff conditions. The results of these studies

are summarized in Table XIV.

Table XIV. Predicted Shingle Maximum Operating

Temperature in the FPS Application.

Takeoff

Baseline Engine

Growth Engine

Growth Engine

(Takeoff Roll)

T3, P3, TOverhang, TM_x.
K (° F) MPa (psia) K (° F) K #) Location

Inner
814(1006) 3.020(438) 1083(1490) 1111(1540)

Panel i

910(1178 3.751(544) 1233(1760) 1283(1850) Panel I

927(1209) 3.296(478) 1224(1744) 1272(1830) Panel I
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A recommended mission mix provided in the E 3 engine technical require-

ments is shown in Figure 37. This mission indicates engine operation at the

most severe condition (hot day) on only 20% of the total flights. However, in

order to provide a conservative approach to the shingle liner durability

assessment, life studies evaluated cyclic life by assuming constant hot-day

engine operation. A comparison of liner heat loads for the growth engine

tropical day 15 K (+27 ° F) and hot day 35 K (+63 ° F) indicates that the trop-

ical day condition is life-limiting due to higher metal temperature gradients.

In order to assess shingle operating stresses, a finite-element model of

the shingle was constructed. The computer program, MASS (Mechanical Analysis

of Space Structures), was employed. Figure 38 shows the MASS model of the

shingle. The model consisted of a series of curved plates and beams and accu-

rately modeled the actual shingle casting. Only half the shingle was modeled

because it is symmetric about the axial centerline. Boundary conditions on

the model accurately simulate the combustor environment and structural attach-

ment. The MASS program is capable of calculating stress levels due to pres-

sure, mechanical, and temperature loading.

The shingle MASS model was employed in order to determine shingle pres-

sure stresses. The maximum anticipated combustor liner pressure drop was

imposed across the panel. A safety factor of 1.5 was applied to account for

engine surges during transient operation. As shown in Figure 39, the maximum

pressure stress occurred in the support foot region of the shingle; this

stress determines the ultimate rupture life of the liner.

A shingle support foot rupture life was estimated based on the foot oper-

ating stress and temperature. Increased rupture life can be obtained by

increasing the shingle foot width relative to the slot between feet (that is,

by increasing the foot cross-sectional area). Figure 40 shows that the chosen

E 3 design meets the engine life goal with margin.

The low cycle fatigue life of the shingle was assessed at the hot-day

growth takeoff condition with a hot streak located at the quarter shingle

position (Figure 41). The hot streak was modeled as a narrow axial band.

Various locations were evaluated and the quarter shingle position produced

65



(9

(9

b.O
.M

0

+-_

(9
0

(9

30,

20-

10--

0

Life Assessment Approach

Evaluate Life at Constant

Hot Day +15 K (27 ° F)

Operation

Change in Engine Inlet Temperature Level - 5T2, o F

-60 -90 -120 0 20 40 60

I I I I I I II

Cold Day Std

Day

Tropical

Day

Hot

Day

I I I I I I i

-30 -50 -70 0 10 20 30

Change in Engine Inlet Temperature Level - AT2, K

Figure 37. Recommended Mission Mix for E 3.

66



Q)

Q;

c,O

PI
bJD

.,-I
J=
(/]

\

\

\
\

\

\

\

\

\

I

: ' _o

",|

1" \\
! \

\ \\

\
\

\
i
i

\-
0

.,,,J

\

(:

\
\

\
\

OF PC;o',_,QL_ALITY

p.=

,-I

PI

PI

.,-I

pI

.,--I

,4,-

'4"

4--

'4--

m,.

,J
Q;

0

PI

_)

bm

.,-4

.c:

:)

.Pi

67



o'
c;

O_c;
.,.-I

_2
•_ O

O0
O

O

c5

O

r_

U'l

b0

, °1-1

O

Effective Stress, ksi ORIGINAL PAG_ iS

o ,_ o OF POOR QUALITY
O,l c_ _ _ u'_ O

t',..

,

L_

0

.r,,I
,._
r..o

O

tfl
(D

r..D

_D

tfl

@

O
O

4_

,-4

0_

.M

I

i

O O O
O

ed_ 'sse_%8 enT_e_

O

O

4_

.M

-M

4-_

o_

,--4

-M

,--4

d

.,.-4

68



OE PO0_ ' _

10,000

1000

°_

100

10

I
Hot Day Growth Takeoff

• / K T = 1.5• 1.5 Shingle _P

• K T = Stress Concentration Factor //

• Avg -3c Properties ] /

-iiii
I

=2.0

E 3 Life Goal - 300 hr

at Takeoff

/

Slot Width_S_W_Foot
Width

Figure 40.

0.5 1.0 1.5

Foot-Width to Slot-Width Ratio, W/S

Shingle Foot Size Versus Rupture Life Capability.

2.0

69



ORIGINAL PAGE l_

OF POOR QUALITY

t_
t-

•_ 0

0
-r-.I

4a

._

g_

O

O

b_

c_

O

O

g

.r.t

UI

0

.,..I

70



the highest shingle stress level. Figure 42 shows the stress distribution at

the hot streak location. The life-limited region of the shingle was the aft

support foot region.

An estimate of cycle life was made by utilizing the shingle thermal

stress and operating temperature predictions. The cyclic life was estimated

based on the effects of foot-width to slot-width ratio and operating tempera-

ture. Cyclic life capability can be increased by opening the slot width,

thereby allowing increased coolant flow introduction. However, this slot-

width size is limited by rupture life considerations. Adequate foot width

must be maintained to provide sufficient rupture life as shown in the prior

rupture analysis. As shown in Figure 43, the chosen shingle configuration

provides adequate fatigue life. For constant hot day operation, degraded

material properties, and hold-time effects included, the shingle design meets

the life goal with margin.

The shingle cyclic life capability is very sensitive to operating tem-

perature. A moderate increase in shingle temperature results in a significant

loss in cyclic life capability. If shingle temperature predictions are

exceeded during actual engine operation, then liner cooling distributions

would be adjusted to ensure adequate component life.

Table XV shows a comparison of the predicted shingle life capability to

the program design goals. Adequate rupture and fatigue life are provided

with the chosen design. The growth engine combustor would utilize Mar-M-509

as the cast shingle alloy to meet the cyclic llfe requirements.

Table XV. E 3 Combustor Shingle Predicted Life Levels.

E 3 Goal

Baseline Engine, X-40 Shingle

(TMax. = Iiii K (1540 ° F)

Growth Engine, Mar-M-509 Shingle

(TMax. = 1283 K (1850 ° F)

Fatigue Life,

Cycles (Hold-Time

Effects Included)

9,000

105

26,000

Rupture Life, Hours

(Stress Concentration

Effects Included)

300 hr

5,000

1,000
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The combustor support liners were analyzed using CLASS-MASSand BOSOR

(Buckling of Shells of Revolution) computer programs. The CLASS-MASSmodel

was used to produce the stress levels due to pressure, mechanical, and tem-

perature loadings. The BOSORmodel was used to identify the critical buckling

pressures and modeshapes of the outer liner. Adjustments were madeto the
critical buckling pressure level to allow for out-of-roundness effects.

The CLASS-MASSanalysis of the shingle support liners was conducted to

assess the operating stress levels at the most adverse operating conditions.
The models simulated the growth engine maximumpressure conditions and the

actual structural attachment boundary conditions. The effective stress
distributions for the outer and inner support liners are shownin Figures 44

and 45, respectively.

An important design consideration in the liner design is the buckling

capability of the outer liner. The liner shell is subjected to the buckling
loads resulting from the combustor pressure drop. The E3 design was analyzed

using the model shown in Figure 46. Various liner thicknesses were evaluated

over a range of 0.76 to 1.27 mm(0.03 to 0.05 in.). The buckling analysis
utilized the maximumgrowth engine pressure drop condition.

The critical pressure drop across the outer liner that produces buckling

of the shell is dependent on several factors: the end fixity of the shell,

thickness of the shell, number of nodes of the deflected structure, and the
roundness of the initial structure. Figure 47 shows that for a round struc-

ture with a thickness of 1.02 mm(0.040 in.), a minimumcritical pressure of

approximately 1.24 MPa(180 psi) is indicated. This pressure is well above

the anticipated operating pressure drop of the liner. However, when the liner
out-of-roundness effects are considered, the margin of safety is reduced.

Figure 48 shows the effect of out-of-roundness on the buckling characteris-
tics. The chosen E3 liner thickness and radial concentricity requirements

provide a 2X safety margin at maximumgrowth engine operation.

5.4 CASING

The primary function of the combustor casing (Figure 49) is to support

the combustor and its fuel delivery and ignition systems. The casing features
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mounting pads for the fuel nozzles, igniters, and combustor mounting pins. In

addition, the casing has compressor discharge bleed ports, instrumentation

ports, and borescope inspection ports.

The combustor casing was analyzed using the CLASS-MASS computer program.

Figure 50 shows the stress levels of the casing at the growth engine maximum

pressure loading conditions. In this analysis the casing temperature is

assumed to be fairly uniform and slightly less than the compressor discharge

temperature. The casing thickness was chosen so that the maximum stress

levels would have a 50% yield strength of the casing material.

Figure 51 shows the combustor support pin design. This design is similar

to the CF6 support pin design. The 30 support pins are bolted to the outer

case and establish the axial location of the combustor through mating holes in

the cowl struts. The combustor loads are transmitted to the combustor case

through the aerodynamic support pins. A wear-resistant surface is provided at

the support pin/cowl interface with a triballoy coating on the support pin and

a Stellite 6 bushing in the cowl.

5.5 DOME

Figure 52 shows a forward-looking-aft view of the combustor dome assembly.

Each of the domes consists of 30 swirl cups supported by a 360 ° spectacle

plate. The spectacle plate is the main structural member of the dome and is

protected from the hot gases by individual splash plates at each swirl cup

location. The swirl cups are comprised of counterrotating primary and secon-

dary swirlers. The swirlers are machined from adjustable area swirler cast-

ings which allow flexibility in flow sizing.

The _rimary swirler features a slip joint attachment to the swirler cup

which allows the primary vane assembly to "float" within certain limits. This

floating vane arrangement allows for assembly stackup plus thermal expansion

between the dome and fuel nozzle.

The domes are bolted to the cowl assembly. The cowl struts transmit the

aerodynamic loads from the domes and liners through the support pins to the
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Figure 51. Combustor Support Pin Design.
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combustor casing. Scallops are provided on the inner and outer cowls to allow

installation and removal of the fuel nozzles without major engine disassembly.

5.6 CENTERBODY

Figure 53 shows the centerbody structure. Its primary function is to

separate the primary burning zones of the pilot and main stage domes. The

main structure of the centerbody consists of a 360 ° machined piece with both

film and impingement cooling. A sheet metal impingement baffle is brazed

inside the centerbody cavity. Each dome has dilution air introduced through

30 dilution eyelets which are brazed to the main structure. Two crossfire

tubes, in line with the two igniters, provide flame propagation across the

centerbody to the main stage dome. Figure 54 shows a closeup view of the

combustor, illustrating the centerbody region near a crossfire tube. Other

features shown in the figure are pilot side dilution holes and tip cooling

holes.

Several design changes to the centerbody were incorporated since the pre-

liminary design review. The centerbody tip was shortened to add rigidity and

to eliminate a difficult tip hole drilling operation. This tip was also

slotted to reduce thermal stress. A stable thermal barrier coating material

was applied to reduce the metal temperature. "Gill" cooling holes were pro-

vided downstream of each crossfire tube in order to increase the film cooling

in that region.

Figure 55 shows the results of the centerbody life analysis. A compari-

son was made between different centerbody configurations to determine the

effect that the design changes have on cyclic life. As shown, the +baseline

configuration with tip slots and thermal barrier coating provides a life level

in excess of the required 9,000 cycles.

5.7 FUEL DELIVERY SYSTEM

The fuel delivery system (Figure 56) consists of two completely indepen-

dent systems which feed each dome through a single-stem fuel nozzle. The fuel

manifolds and pigtail assemblies are fabricated from stainless steel. The
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fuel nozzle is made from a stainless steel forging. The materials selection

is based on extensiv_ demonstrated commercial engine experience and reduced

fabrication costs.

The fuel nozzle mechanical design features are shown in Figure 57. Each

circuit has its own positive check valve to maintain fuel in the manifolds

and to reduce system fill time. Double heat insulation is provided by a stem

heat shield and a coking gap around each fuel passage to prevent fuel boiling.

Each nozzle tip is fed through individual primary and secondary fuel tubes to

accommodate off-design conditions. An extended valve standoff is provided to

isolate the metering valve from the engine casing and its associated heat

loads, which might cause fuel gumming or varnishing of the valve components.

Figure 58 illustrates the fuel nozzle assembly.

Extensive vibration and geometric studies were conducted to ensure that

the fuel nozzle design would avoid critical frequencies on the high-power

operating range, meet geometric constraints, and minimize aerodynamic losses.

Vibration analysis was conducted by using the MASS computer program. The

nozzle stem was modeled as a series of constant area beams and included the

effects of the fuel passages. Figure 59 shows the model used to determine the

first flex frequencies of the fuel nozzle. The results of the vibration study

are shown in Figure 60. The Campbell diagram shows the first flex frequencies

of two nozzle stem designs versus engine speed. The stiffened configuration

represents the initial design intent to have a minimum natural frequency of

i000 Hz at takeoff power. But the chosen design has a frequency of 750 Hz at

takeoff. The 750-Hz configuration was chosen on considerations of lower asso-

ciated aerodynamic losses due to stem blockage, combustor/fuel nozzle assembly

envelope, and lower fuel nozzle weight. The calculated stem vibration charac-

teristics were verified by a laboratory bench analysis. This test indicated

that the E 3 fuel nozzle stem has adequate rigidity for engine application.
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Method

• Finite Element Model

(Mass Computer Program)

• Approximate Stem with a Series

of Constant Area Beams

• Include Effect of Fuel Passages

Figure 59. Fuel Nozzle Vibration Model.
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6.0 COMBUSTOR SUBCOMPONENT DEVELOPMENT TESTING

PREFACE

This section describes the subcomponent test programs that were used to

assist in the development of the E 3 combustor system. Subcomponent testing

was used to verify analytical aerodynamic designs for the combustor diffuser

system and the combustor dome. Performance development was then continued in

annular sector test vehicles in parallel to and in advance of the full-annular

combustor development program to ensure that performance goals were attainable

and to quickly solve annular performance problems relating to aerodynamics,

thermodynamic performance, and emissions.

Use of subcomponent testing for these purposes greatly facilitates the

overall development of the full-annular combustor, and provides an inexpensive

and rapid means for problem solving during the development cycle. In addi-

tion, hardware changes can be evaluated separately from the annular effort to

provide necessary alternative approaches for changes in design philosophy or

engine system modifications.

6.1 COMBUSTION SYSTEM DIFFUSER TEST

6.1.1 Introduction

The purpose of this test program was to develop and characterize the

aerodynamic performance of the Energy Efficient Engine (E 3) combustor inlet

diffuser (as a supporting effort to the E 3 combustor development program).

This diffuser is an advanced, short-length design that is closely integrated

with the low emissions double-annular E 3 combustor system. For this pro-

gram, a full-scale annular model of the E 3 diffuser was built and tested at

the General Electric Corporate Research and Development Center (CRDC) in

Schenectady, New York. This model was constructed of wood and aluminum and

was designed to accurately duplicate the E 3 diffuser flow passages from the

compressor outlet guide vanes (OGV's) to the five coaxial combustor annular

flow passages downstream of the combustor dome region. A metering plate at

the exit end of the model was used to independently vary the flow in each pas-

sage.
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Static pressure recovery characteristics and total pressure loss coef-
ficients were measured for a wide range of flow splits in each of the five

flow passages. Thesemeasurementswere madefor three different inlet veloc-
ity profiles with the final modified version of the E3 flowpath contours.

Diagnostic tests with a two-dimensional water table were conducted ear-
lier in the test program and revealed excessive flow spillage from the com-

bustor domecowlings with the original flowpath contours. Several cowling

contours were tested on the water table, and a design was selected for the

airflow model that had significantly reduced flow spillage from the dome

region.

Test results for the final version of this diffuser design show that the

pressure losses in the outer flow passage are about 0.5%higher than expected.
Pressure losses in the remaining four passages are nearly the sameor some-
what less than anticipated. The test results also showthat all of the indi-

vidual passage static pressure recovery characteristic curves have negative
slopes at the design flow conditions, which indicates that this diffuser

design has a high degree of flow stability. High turbulence levels generated

by the inlet velocity profilers for the peaked-out and peaked-in profiles

resulted in significantly lower diffuser pressure losses when tested with

these profilers.

6.1.2 Design Features

An advanced, short-length, low-emissions, double-annular combustion sys-

tem was selected for the NASA/GE Energy Efficient Engine. This combustion

system design has many new technology features, including a high performance,

split-duct inlet diffuser. The design configuration was selected to achieve

a short-length prediffuser, positive flow direction to the combustor domes,

reduced air temperature extraction for turbine rotor cooling, and low pres-

sure losses.

As illustrated in Figure 61, the E 3 combustor inlet diffuser accepts

core engine airflow from the compressor OGV's and divides this flow into two

parallel prediffuser passages. The outer passage curves outward and directs
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Figure 61. E3 Prediffuser Wall Contours.
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about 48%of the airflow toward the outer domeannulus of the combustor. The

inner passage directs the remaining 52%of the airflow toward the inner dome
annulus of the combustor. Each of these two passageshas a diffusion area

ratio of 1.8.

Flow leaving this short prediffuser is dumpedinto the combustor liner

passages and into the plenum region upstream of the combustor domes. The

dumping area ratio in the liner passages is 2.5. The resulting dumping pres-
sure loss is small because the compressor exit velocity head is reduced from

5.8% of the total pressure at takeoff conditions to 1.7%by the prediffuser.

Nearly all of the prediffuser exit velocity head is recovered in a "free

stream" diffusion region entering each of the plenums ahead of the two com-
bustor domes. With this configuration, total pressure losses from the com-

pressor OGV'sto the combustor domesare very small.

A short, constant-area section is provided in the diffuser passage im-

mediately downstreamof the OGV's to permit the wakes from the OGV's to mix

and decay before the flow is diffused. Downstreamof this section, the outer
and inner walls of the prediffuser begin to diverge and a single-annular

splitter vane is positioned in the passage to divide the prediffuser into two

parallel annular passages. The splitter contours, along with the outer and
inner wall surfaces of the prediffuser, are designed to provide the desired

rate of diffusion through these passages. Each passage is designed to fall

below the line of no appreciable stall on the Stanford diffuser flow-regime
correlation (Reference 5). The splitter vane reduces the length required for

the prediffuser and also directs the airflow leaving the prediffuser into the

combustor domeregions.

A compressible, axisymmetric potential flow computer program (CAFD)was
used to analyze several configurations for the E3 prediffuser contours. A

streamline plot of the final selected version is presented in Figure 62. The

CAFDProgram accounts for the flow blockage of the support struts by intro-

ducing a distributed blockage as a function of radial position at each axial

station. Velocity distributions on the outer and inner prediffuser wall sur-
faces from the CAFDanalysis are presented in Figure 63. These wall velocity

distributions show the effects of the prediffuser wall curvature and the
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effects of the splitter vane and support strut blockages. The effective area

ratio and length-to-inlet-height ratio of equivalent straight diffusers were

determined directly from these velocity distributions and plotted on the Stan-

ford diffuser flow regime correlations (Figure 64). The design level values

for the equivalent straight diffusers fall below the line of no appreciable

stall on the Stanford correlations.

As a result of this analysis, the selected E 3 diffuser design can be

expected to have stable flow patterns with no regions of flow separation for

a broad range of engine operating conditions.

Bleed airflow for turbine rotor cooling (about 6% of the total flow) is

supplied through holes in the base region of the splitter vane. This airflow

enters the hollow splitter vane structure, which serves as a plenum chamber

for this flow, and passes through the 30 splitter vane support struts to the

inner cavity of the engine to the first-stage turbine rotor. This bleed-flow

arrangement provides the turbine with cooling air that is taken from the cen-

ter of the compressor exit flow. Such core flow is considerably cooler than

the flow near the casing walls of the compressor. Also, bleed flow from the

base region of the splitter vane helps to stabilize the flow pattern in the

dumping region downstream of the prediffuser.

6.1.3 Design Goals

The purpose of the combustor diffuser system is to deliver the high

velocity airflow supplied by the compressor to the combustor and cooling flow

to the turbine nozzle vanes with the smallest possible pressure loss.

The overall pressure loss goal for the E 3 combustion system is 5% of

the inlet total pressure to the combustor and is measured from the OGV exit

to the Stage 1 turbine nozzle inlet. This overall pressure loss is distrib-

uted throughout the combustion system.

A portion of the pressure loss is attributed to the prediffuser and the

dumping loss due to the sudden expansion of the airflow streams as they dis-

charge from the prediffuser. The remaining pressure loss is associated with
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the pressure drop required to flow the airflow through the fixed orifices of

the combustor surfaces. The sum of these pressure losses when mass weighted

for the airflow in each of the combustor passages comprises the overall com-

bustion system pressure loss. Therefore, low diffuser pressure losses are

important to provide the maximum available pressure loss to the combustor

passages. The available pressure energy is akey parameter with respect to

combustor and turbine performance. Therefore, keeping the losses in avail-

able pressure energy small is necessary to provide the desired combustor

fuel-air mixing and gas temperature dilution to obtain the required combus-

tor exit temperature distribution into the turbine. In addition, adequate

pressure must be maintained in the passages which supply cooling air to the

turbine nozzle to prevent hot combustion gases from being ingested into the

turbine nozzle cooling circuits. This minimum level of pressure drop required

is referred to as the turbine nozzle backflow margin. The goals for the dif-

fuser system are shown in Table XVi in terms of pressure loss relative to the

total pressure at the diffuser system inlet.

Table XVI. Diffuser Pressure Loss Goals.

Prediffuser AP/P

Overall AP/P

Turbine Backflow &P/P

Mass-

Outer Outer Center Inner Inner Weighted

Passage Dome Passage Dome Passage Average

i.i - - - I.I -

2.49 0.75 2.95 0.75 2.16 1.5

2.00 - - - 2.00 -

6.1.4 Water-Table Model Tests

Preliminary diagnostic tests were conducted early in the program on a

two-dimensional model of the diffuser using a water table. The test config-

uration was a three-times scale model of the full-annular configuration which

simulated all of the key system features including prediffuser strut blockage
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and turbine cooling airflow extraction. The purpose of these tests was to

identify any locations within the diffuser passages where regions of flow

separation or instability might exist. These tests were conducted at very

low Reynolds numbers compared to the engine. Therefore, the water table

tests were used to obtain early diagnostic information as opposed to perfor-

mance data.

The two-dimensional model of the E 3 combustor passages tested on the

water table is shown in Figure 65. The flow behavior around the cowl of the

outer dome shows flow spillage from the dome region and flow entering the

outer dome, center, and inner dome passages as visualized with dye injections

and shown in Figure 66. The flow split in each of the channels was simulated

by adjusting holes in a perforated plate that was inserted at the discharge

of the channel. The flow rate in each channel was measured by observing the

rate of movement of the injected dye with a stopwatch. The bleed flow was

simulated with a plastic suction tube inserted into the hollow splitter vane.

The total circulated flow was 120.7 i/min (31.9 gpm) and the bleed flow was

7.2 i/min (1.92 gpm) or 6% of the total flow.

For the initial test series on the water table, there was no evidence of

flow separation or flow instability. However, considerable flow spillage from

the combustor dome regions around the cowling leading edges was observed.

Subsequent tests of the full-annular airflow model of the diffuser with the

original cowling design indicated lower than expected static pressure recover-

ies in the outer and inner liner passages which were probably caused by the

flow spillage from the cowlings. Therefore, modified versions of the cowling

leading edges were tested on the water table. The outer and inner cowlings

were extended to reduce the capture area of the openings. These modifications

were made in two stages as illustrated in Figure 67. On the water table, the

Mod I design eliminated the cowling flow spillage. Consequently, the airflow

model cowling contours were changed to the Mod I design and all of the fol-

lowing airflow testing was conducted with this design.

6.1.5 Annular Model Airflow Tests

The test facility used for airflow testing is located in the Gas Dynamics

Building at the K-I site of the GE/CRDC. The air supply for this facility
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consists of four Fuller rotary vane-type air compressors. From the compres-

sors, the air is ducted by meansof 30.5-cm (12-in.) piping to a 116.8 cm
(46-in.) diameter plenum chamber to which the model was attached. This cham-

ber is equipped with screens and honeycombto provide smooth, uniform flow to

the model. The piping between the compressors and the plenum chamber is

equipped with a metering section in which various-sized sharp-edge orifices

can be installed. This facility is capable of delivering approximately 5.23
kg/sec (11.5 ib/sec) of air at pressures up to 0.13 MPa(4.0 psi). At reduced

flow rates, higher pressures are available.

For this test program, pressure measurementswere madeusing a Scanivalve

system and data logger. By automatic stepping of the Scanivalve pressure

switches, the pressure from the various taps on the model were ducted to a

single pressure transducer. The output of the transducer was fed to a digital
voltmeter. At steady-state conditions the data logger was automatically trig-

gered. The output of the data log_er was transmitted to a teletype readout

and punched on paper tape. The paper tape was then fed to a computer for data
reduction.

The E3 model assembled on its test pedestal is shownin Figure 68 and

componentsections of the model are shownin Figures 69 and 70.

Figure 69 shows the prediffuser discharge and strut assembly; Figure 70

shows the fuel nozzles, the combustion chamberouter passage, outer dome,

center passage, inner dome, and the inner passage throttling plate with its

perforated holes. This throttle plate provides the flexibility to indepen-

dently vary the flow in each passage and thus determine the performance of
each passage as a function of airflow quantity.

A total of 132 static pressure taps were installed in the model. The

location of these taps is shown in Figure 71, and the exact axial and circum-

ferential positions are shown in Appendix A. The pressure tap located on the
inner and outer surfaces of each of the passageswas used to determine the

static pressure recovery of each passage. The pressure taps located at the
exit of each passage, whenused in conjunction with the pressure taps located

on the downstreamside of the throttling plate, were used to determine passage
airflow splits.
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Kiel probes and hot film probes were employed to obtain the velocity pro-

files at the diffuser inlet plane and at the prediffuser discharge. The Kiel

probe is a specially designed probe similar to that shown in Figure 72. This

probe accurately measures the total pressure with minimum interference effects

due to probe structure. The local velocity was calculated based on the mea-
t

sured total pressure and a measured wall static pressure. For the diffuser

inlet profiler, a Kiel probe radial traverse was made at four equally spaced

circumferential locations. The Kiel probe was traversed at nine radial sta-

tions to describe the radial velocity profile at these four circumferential

locations. The hot film probe provides an indication of velocity directly

based on calibration of the hot wire. The hot wire is less sensitive to flow

direction than the Kiel probe, since it operates on an electrical resistance

principle and essentially measures absolute velocity. However, it is sensi-

tive to contamination from foreign substances which might be entrained in the

air. Therefore, it was used only for the prediffuser discharge where measure-

ment normal to the airflow would be difficult.

A series of calibration runs was made to calibrate each of the five pas-

sage exits to determine the variation of airflow with pressure drop across the

orifice plate for several discharge orifice plate openings as represented by

the different corking arrangements (that is, number of exit holes corked). The

procedure used to perform these calibrations was to seal off four passage exits

while calibrating the fifth. For each exit orifice place flow area, a dis-

charge coefficient was computed as a function of airflow rate. These discharge

coefficients were then plotted an a curve fit of the form

CD = :I¢'A--P+ _o

was obtained, where

CD is discharge coefficient

Ap is pressure drop across orifice plate

_I,= o are coefficients which best correlated the data.
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Finally, the coefficients, _1 and _o were plotted as a function of flow

area and were fitted by a least-squares polynomial curve fit. This procedure

was followed for each of the five passages. The values obtained are shown

below.

Outer Inner Inner

Liner Outer Dome Centerbody Dome Liner

_o 0.0136 0.0176 0.00523 0.0208 0.0137

_i -0.0007 -0.000112 -0.0000485 -0.00015 -0.00006

The static pressure recovery of each of the five passages was based on

the differential pressure between the average of the inner and outer surface

of each of the passages and the prediffuser upstream static pressure. The

flow split in the five passages was evaluated from the static pressure instru-

mentation located at each of the passage discharge stations and static pres-

sure taps located just downstream of the orifice plate.

The pressure data recorded during the test of the E 3 model was fed into

a computerized data reduction program to obtain the performance characteris-

tics. The computed performance characteristics fall into a number of basic

categories as discussed below.

Based on the measured airflow to the model and the average inlet pres-

sure, the average inlet velocity and Reynolds number were calculated. The

Reynolds number was based on the hydraulic diameter of the passage; that is,

two annular passage heights. The amount of bleed flow was calculated from

the air temperature and the measured pressures upstream and downstream of

the 10.2 cm (4.0 in.) bleed-flow orifice.

Flow split runs were made for each of the five passages of the E 3 combus-

tor diffuser mode. The nominal flow splits selected for evaluation in the

tests were evolved during the preliminary design phase of the combustor. These

flow splits were selected based on design considerations including emissions,
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performance, and flowpath requirements. The design percentage flow split

level for each passage is shown below:

Outer Channel

Outer Dome

Center Dome

Inner Dome

Inner Channel

Bleed Flow

16.2% W 3

24.4% W 3

9.15% W 3

29.18% W 3

15.25% W 3

5.82% W 3

The flow split level percentage was first obtained by varying the number of

corks in the discharge orifice plate of each passage. The off-nominal flow

setting of the outer channel was then varied while the flow areas at the dis-

charge orifice plate of the other four channels were held fixed. This proce-

dure was followed to obtain four off-nominal flow settings for the outer pas-

sage. In a similar manner, off-nominal settings for the other four passages

were made. The sum of the five passage flows was added to the bleed flow,

and the total airflow was then compared to that measured with the airflow

supply upstream orifice plate to give an indication of the accuracy of the

results. The airflow error for each test generally ranged from 2% to 3%.

One measure of the performance of the diffuser is provided by the sur-

face static pressure coefficient distribution within the diffuser. This

coefficient was determined for all pertinent wall static measurements and was

defined as:

Cpw

P - Ps inlet P - PSinlet

(i / 2 )p_2 inlet qinlet

where PSinle t is the average of the inlet static pressures, P is the measured

wall static pressure, and _ is the dynamic head based on the area-averaged

inlet velocity.
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An important measure of the performance of a diffuser passage is the

degree of passage static pressure recovery. For this purpose, a passage static

pressure recovery coefficient, Cpp was defined by using the same expression

as used for the wall static pressure recovery:

Cpp

p - p

Sinlet
P -P

s

(I/2)0V 2
inlet qinlet

where in this definition P is the average of the static pressures measured

at the point in the passage where the recovery is to be determined.

A measurement of the performance of the complete combustor-diffuser is

given by the mean total pressure loss coefficient, CPT , defined as follows:

PT - PT
inlet

CPT = _ = 5

qinlet

= inlet s. sinlet

inlet

(lop) q
qinlet

where PT and Ps are the total and static pressures, respectively, in the

passage where the pressure recovery was determined, q is the dynamic pressure

at the same point, and Cp is the static pressure recovery.

Since there are five passages (outer passages, outer dome, center pas-

age, inner dome, and inner passage), the mean total pressure loss coefficient

was calculated using the mass weighted average
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5
WnCpT

n= I n
CPTmean 5

Wn
n=l

where Wn is the flow rate in passage n and CPTis the corresponding
total pressure loss coefficient.

The full annular airflow tests were conducted with three different inlet

velocity profiles. These inlet velocity profiles were generated by profilers

installed in the inlet passage. Schematics of the profilers used are shown

in Figure 73. The velocity profiles (Figure 74) had peak velocities near the

outer wall, in the center, and near the inner wall of the inlet section of
the diffuser. Velocity profiles at the E3 engine compressor exit station

are expected to be similar to the center peaked profile.

During initial testing of the diffuser model, somevery unexpected and

disappointing results were obtained for the measured inlet velocity profiles
and the diffuser performance. A posttest inspection of the diffuser model

revealed a separation of the 30 struts from the outer flowpath (pilot stage)
of the diffuser model. Further investigation revealed the source of the strut

failure and unexpected _oor diffuser performance levels. The airloading on

the test rig centerbody was of sufficient magnitude to deform the inlet

plenum support struts and permit the test rig centerbody to moveaft approxi-

mately 0.25 cm (0.I0 in.). Not only did this result in prediffuser strut

failure at the wall, it also resulted in an off-design prediffuser area ratio.
The diffuser model was repaired and a method to strengthen the test rig to

prevent deflection of the inlet struts and retain the axial location of the

centerbody was incorporated. Testing with the refurbished diffuser model and

reinforced test rig was then resumed.

Static pressure recovery levels in each of the five E3 diffuser pas-

sages are presented in Figure 75 as a function of the flow level in the pas-

sage with the center peaked inlet velocity profile. Recovery levels with
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the outer peaked inlet velocity profile are presented in Figure 76, and recov-

ery levels with the inner peaked inlet velocity profile are presented in Fig-

ure 77. Each of these sets of static pressure recovery curves represents a

summary of all of the individual passage test runs. Static pressure recovery

curves for each one of the individual passage test runs are included as

Figures IB through 15B in Appendix B.

As illustrated in Figure 75, for the center peaked profile, the static

pressure recovery levels in all of the passages are unusually high at the

design level flow conditions, although the outer passage recovery and the dome

flow recoveries are not quite as high as anticipated. The dome recoveries

were expected to be about 0.85 and the outer passage recovery was expected

to be about 0.50. The inner passage recovery is very close to the expected

value, and the center passage recovery is higher than the expected value.

These results are similar to those of several previous diffuser test programs.

The consistent results and the high recovery levels indicate that the flow in

this diffuser is extremely stable and that the prediffuser does not have

regions of flow separation.

With the outer peaked and inner peaked inlet velocity profiles, the

recovery levels are higher than those with the center peaked profile. Recov-

ery levels in the outer passage and outer dome region were considerably higher

with the outer peaked profile, as anticipated. However, recovery levels were

higher in the inner passage, the inner dome region, and in the center passage,

also. With the inner peaked profile, recovery levels were much higher in the

inner passage and inner dome region as may be expected, but they also were

higher in the outer passage and in the center passage. The most probable

reason for these high recovery levels is the high turbulence levels generated

by the blockage elements of the inlet velocity profilers. Higher turbulence

levels usually improve diffuser performance (References 6 and 7). The block-

age elements of the outer and inner peaked profilers were larger than those

for the center peaked profile and would generate larger scale turbulence.

All of the static pressure recovery curves have negative slopes at the

design Doint flow conditions. This is an indication of a high degree of flow

stability in the passages and low sensitivity to combustion system resonance

effects.
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Static pressure rise coefficients, measured with the pressure taps located

along the outer and inner prediffuser and combustor casing walls, are presented

in Figure 78 for design flow conditions with the center peaked inlet velocity

profile. Similar curves for the outer peaked profile and for the inner peaked

profile are presented in Figures 79 and 80, respectively. The initial reduc-

tion in static pressure, immediately downstream of the diffuser inlet, shows

the effects of the diffuser wall curvature and the blockage of the strut and

splitter vane leading edges. The static pressure increases strongly along the

prediffuser walls to the end of the prediffuser. The pressure in the bluff

base region of the splitter vane is somewhat higher than in the other base

regions which may account for the higher-than-expected recovery levels in the

center passage.

In the inner diffuser passage adjacent to the inner cowling, the static

pressure continues to rise due to passage velocity profile mixing. In the

outer passage, however, the static pressure drops sharply behind the fuel noz-

zle which is an indication of parasitic drag losses in this passage. The drag

loss is probably caused by the fuel nozzle stems and the combustor mounting

struts.

Total pressure loss coefficients for each of the five diffuser passages

are presented in Figure 81 as a function of the flow levels in the passages.

These curves are plotted for the center peaked velocity profile. The total

pressure loss of any particular passage is the product of the total pressure

loss coefficient for that passage and the diffuser inlet velocity head which,

for the E 3 engine at sea level static conditions, is 5.78% of the compressor

exit total pressure.

These curves further show the effects of parasitic drag losses in the

outer diffuser passage. In the inner passage, as flow is increased, the total

pressure loss coefficient decreases because the effective dumping area ratio

is reduced. But in the outer passage the pressure loss coefficient increases

with increased flow, which is an indication of increased drag losses.

Such total pressure loss coefficient curves were used to calculate the

diffuser passage total pressure losses for the E 3 engine at sea level static
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conditions. The values are presented in TaSle XVII where the measured dif-

fuser pressure losses are compared to the values that were predicted prior to

the test program. The overall mass-weighted loss is notably close to the

predicted value, but the measured outer passage pressure loss is about 0.5%

higher than the predicted value. This increment in total pressure loss is

most likely associated with the higher than expected parasitic dray losses

associated with the fuel nozzle bodies.

In addition, two other aspects of the diffuser performance were inves-

tigated which related to off-design performance of the baseline diffuser con-

figuration. First, the impact of the absence of diffuser bleed at the base

of the splitter was evaluated. Second, the effect of a uniform, low level

turbulent inlet velocity was investigated by removing the profiler located

upstream of the splitter vane. As expected, the absence of prediffuer bleed

had hardly any effect on the diffuser performance. However, as shown in Table

XVlII, the uniform inlet velocity produced significantly poorer results than

obtained with the nominal flow split design with a center peaked profiler in

place. This performance deficiency is attributed to the very long undisturbed

inlet passage which exists without the profiler. An exceptionally thick low-

energy laminar boundary layer builds up in this passage which is easily separ-

ated from the walls as the passages diffuse. However, in the engine instal-

lation the turbulence levels are expected to be much higher than experienced

in the test rig due to the rotating machinery. Therefore, turbulence levels

in the rig with the profilers in place are similar to those expected in the

engine application.

6.1.6 Conclusions

Based on the results of the E 3 diffuser model test program, it was

concluded that:

I. The performance of the E 3 combustor inlet diffuser design is

satisfactory and meets the requirements of the E 3 engine.

2. The annular splitter vane used to design a short-length, high area

ratio combustor inlet diffuser has good performance with stable,

stall-free operation.
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Table XVII. Diffuser Model Measured Performance.

• Diffuser Bleed

• Ambient Test Conditions

• Nominal Flow Split

Passage AP/P

Goal

Turbine AP/P*

Goal

Outer

Passage

3.06

2.47

2.07

2.49

1.60

2.10

2.50

2.00

Outer

Dome

1.21

1.43

0.03

0.75

Center

Passage

i.88

1.21

1.22

2.95

Inner

Dome

1.44

0.08

1.00

0.75

Inner

Passage

2.08

1.44

1.32

2.16

2.55

3.20

3.32

2.00

Mass

We ighted

Average

1.81

1.17

1.31

I .50

Inlet

Velocity

Profile

Center Peaked

Inner Peaked

Outer Peaked

Center Peaked

Center Peaked

Inner Peaked

Outer Peaked

Center Peaked

*Back flow Margin

Table XVIII. Diffuser Model Performance Comparison.

• Nominal Flow Split

• Ambient Test Conditions

• Center Peaked Profile

Baseline Configuration

CAP/P)

Goal

- Bleed

- No Bleed

- No Profiler

Outer

Passage

2.97
2.98

3.98

2.49

Outer

Dome

1.19

i. II

1.16

0.75

Center

Passage

1.90

2.01

2.75

2.95

Inner

Dome

1.27

1.38

I .47

0.75

Inner

Passage

2.09

2.11

3.03

2.16

Mass

Weighted

Average

1.74

1.66

2.07

1.50

131



.

.

.

6.

Combustor dome cowling designs must be carefully executed to provide

high pressure recoveries with minimum flow spillage from the high

pressure regions.

Lower than expected pressure recoveries in the outer liner passage

of the E 3 diffuser are probably due to higher than expected para-

sitic drag losses around the fuel nozzle stems and combustor liner

support struts.

High inlet turbulence levels result in improved diffuser performance.

Elimination of diffuser bleed has no major impact on diffuser per-

formance.

6.1.7 Recommendations

Based on the results of the E 3 diffuser model test program, the follow-

ing is recommended:

I. Modify the Stage I leading edge turbine bleed to supply as much of

the turbine cooling flow as possible from the inner passage. Fig-

ure 82 shows that increasing the flow to the inner passage and

decreasing the flow to the outer passage results in reduced pres-

sure losses in both passages.

. Redesign the fuel nozzle stems to reduce parasitic drag losses in

the outer passage and retest.

o Retest the E 3 combustor inlet diffuser model with various levels

of inlet turbulence. Measure the inlet turbulence scale and inten-

sity levels and correlate the improved diffuser pressure recovery

performance with the inlet turbulence levels.

SECTOR COMBUSTOR SUBCOMPONENT TEST

Introduction

The E 3 combustor subcomponent test program was a part of the overall

effort to develop a combustion system for the NASA/GE Energy Efficient Engine

Program. This subcomponent test program was designed for the purpose of eval-

uating and refining the significant aerothermodynamic characteristics of the

combustion system necessary to produce low pollutant emissions and acceDtable

ignition performance.
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The program consisted of three separate test categories which included

swirl cup fuel spray investigation tests, dome metal temperature tests, and

sector combustor tests. These tests were conducted over a 30-month period

spanning the time prior to and during the full-annular combustor development

test effort.

The swirl cup fuel spray investigation tests were conducted to refine

the fuel spray characteristics of the E 3 swirl cup design and to identify an

effective emission reduction sleeve configuration for the design. The swirl

cup was tested for fuel spray quality and distribution with several sleeve

designs. A 45 ° included-angle sleeve was shown to produce the most desirable

fuel spray and, hence, was selected for the baseline configuration of the E 3

five-cup sector combustor.

The dome metal temperature tests were conducted to determine the effec-

tiveness of the E 3 combustor pilot stage splash plate cooling and to inves-

tigate the effects of burning broader specification fuels on dome metal tem-

peratures.

The results of the dome metal temperature tests indicated that adequate

splash-plate cooling airflow levels were selected for both combustor stages

with metal temperatures remaining below 1100 K (1520 ° F), even under the most

severe combustor operating conditions. Furthermore, the use of broad spec-

ification fuels such as marine diesel and ERBS (Experimental Referee Broad

Specification) fuels had only a minor effect on dome metal temperatures.

The sector combustor tests constituted the major part of the E 3 sub-

component testing program. These tests were conducted in a five-cup sector

combustor and were devoted to developing the combustor main performance char-

acteristics including ignition, emissions, exit temperature profiles, and

altitude rel_ght.

A total of seven basic sector combustor configurations were tested.

Some of these configurations were subjected to more than one test with one or

more of their features somewhat varied to investigate specific performance

aspects. The sector combustor ignition performance was improved throughout
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the sector combustor testing effort to meet the E3 start cycle fuel flow
schedule. COidle emissions also met the E3 target level for two of the

test configurations. However, for one of these configurations the HCemis-

sions target level was exceeded, while for the other the ignition perform-

ance deteriorated. NOx emissions exceeded the target level for all config-
urations. However, experience with the full-annular combustor demonstrated

that generally higher NOx emissions are produced in the sector combustor

than the full-annular combustor for similar configurations.

6.2.2 Swirl Cup Investigation Tests

6.2.2.1 Design and Development Approaches

The spray quality of fuel introduced into the combustion zone has a

major impact on the pollutant emissions levels, on ignition capabilities,

and on combustor life. Fuel spray characteristics, such as mass distribution,

spray angle, and droplet size, are of significant importance to the overall

combustor performance; all are directly influenced by the swirl cup design

characteristics - mainly its recirculation zone. The spray angle has a direct

effect on flame stability. Wide fuel sprays tend to produce bimodal fuel

spray; hence, an unstable flame, while too narrow fuel sprays concentrate the

fuel in the center region of the swirl cup producing an extended flame front

inside the combustion chamber. The droplet size directly influences both

ignition performance and emissions, and fuel mass distribution affects emis-

sions as well as the life of the combustor liner.

The swirl cup and fuel spray visualization tests were conducted to deter-

mine the fuel spray characteristics of the pilot and main stage swirl cup

design of the E 3 double-annular combustor. The tests were also intended to

identify an emission reduction sleeve configuration that will produce the

desired spray quality and spray distribution. The effects of varying the fuel

nozzle tip immersion and the primary swirler radial location relative to the

assembly centerline (eccentricity) were investigated, as well.

The E 3 swirl cup design featured an axial flow primary swirler coupled

with a counterrotating radial inflow secondary swirler for both pilot and main

135



stage domes. Other swirl cup design features included an emissions reduction

sleeve, a carbon-preventing venturi, a primary-secondary swirler slip joint,

and an overall simple mechanical design.

All of the swirl cup components tested were E 3 sector combustor test

hardware installed in an F101 engine dome plate and splash plate, modified to

simulate the E 3 dome. The cooling hole pattern for the dome plate was mod-

ified to provide 4.3% Wcomb cooling air for the splash plate as specified

for the E 3 pilot dome design. Dome ring cooling was added to the dome to

better approximate the E 3 dome aerodynamic and mechanical design. The fuel

nozzle used in the tests was a simplex tip with 85" included spray angle rated

at 20.5 kg/hr (45.2 Ib/hr). The pilot dome and main dome swirl cup configu-

rations for the E 3 double-annular sector combustor were sized during these

tests by selecting the appropriately sized secondary swirler to be used in the

cup assembly and matching the primary to the secondary. A schematic of the

test swirl cup dome assembly used is shown in Figure 83.

Three different categories of tests were conducted on the E 3 swirl cup

assembly:

I. Fuel spray visualization tests

2. Fuel spray patternation tests

3. Recirculation zone survey tests

The spray visualization tests were conducted in GE-Evendale Building

302 Fuel Nozzle Laboratory. The apparatus used consisted of a box used as

a plenum. Fuel and air supplies were piped into the box. The dome swirl cup

assembly was mounted on one side of the box in such a way that it discharged

to the outside of the box into a collector. A schematic of the test setup is

shown in Figure 84.

For the patternation tests a similar apparatus to that of the visulization

tests was used except that the discharged fuel was collected into an array of

graduated tubes positioned in a semicircular arrangement. Each tube repre-

sented one radial location of a spray plane. The tubes were rotated to dif-

ferent plane locations and the fuel spray pattern was then determined.
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The swirl cup recirculation zone tests were conducted in GE-Evendale

Building 304 Laboratory using the test stand shown schematically in Figure 85.

The strength of the recirculation zone was determined by using a three-element

aerodynamic probe to measure static and total pressures at the exit plane.

The depth of the recirculation zone was obtained by the aid of a halogen detec-

tion device that was used to measure how far upstream halogen was able to

recirculate when sprayed at the exit plane of the swirl cup.

The test conditions set for the visualization tests were those required to

simulate the E 3 key cycle conditions at the combustor inlet (Table XIK).

These conditions included ground start, ground idle, and sea level takeoff.

For each of these test conditions, three critical swirl cup parameters were

simulated: dome pressure drop, swirl cup velocity, and fuel-to-air momentum

ratio.

Table XIX. Test Conditions for Fuel Spray Visualization Testing.

Swirl Cup

Cycle Parameter &P Dome- Fuel Flow, Fuel-Air

Condition Simulated H20 , cm (in.) kg/hr (pph) Ratio

Ground AP Dome 6.1 (2.4) 11.34 (25) 5 x f/a (SS)

Start Swirl Cup Velocity 7.1 (2.8) 11.80 (26) 5 x f/a (SS)

Momentum Ratio 76.2 (30.0) 5.44 (12_ f/a (SS)

Ground AP Dome 40.6 (16.0) 26.76 (59) 5 x f/a (SS)

Idle Swirl Cup Velocity 68.1 (26.8) 27.67 (61) 4 x f/a (SS)

Momentum Ratio 40.6 (16.0) 7.71 (17) f/a (SS)

Sea Level AP Dome 44.4 (17.5) 14.97 (33) 5 x f/a (SS)

Takeoff Swirl Cup Velocity 127.0 (50.0) 12.25 (27) 2 x f/a (SS)

Momentum Ratio 44.4 (17.5) 10.43 (23) f/a (SS)

The visualization test procedure simply requires setting the dome pres-

sure drop and fuel flows, then visually inspecting the resulting fuel spray

for its critical characteristics. A stable spray was defined as a single
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angle spray which could not be altered by any aerodynamic or mechanical dis-
turbance. Photographs were taken at each point-setting and were used to com-

pare the spray angle. The spray angle measurementswere madeto include the

outermost boundary of the spray envelope and are considered to be only qual-
itative.

The sameconditions used in the visualization tests were also used in

the patternation tests. The discharged fuel was allowed to accumulate in the

collecting tubes for 20 minutes at each test point. The volume of fuel col-
lected in each tube wasmeasuredand used to establish the fuel flow mass

distribution. Due to the length of time involved in these tests, only prom-

ising configurations from the visualization tests were tested on the pat-
ternation stand.

For the swirl cup recirculation zone tests, representative pressure drops

across the domewere set to simulate the swirl cup aero conditions at ground
idle and SLTOoperation. Static and total pressure measurementswere made

along the horizontal cup centerline axis of the swirler assembly. The three-

element probe used for the pressure measurementalso had the capability of
determining the direction of flow at each point by balancing the two static

pressure elements in the probe tip.

For the halogen detector testing, a small tube was inserted through a
rubber plug inserted into the hole in the swirl cup which would normally house

the fuel nozzle. The tube had a degree of freedom along the swirl cup axis.
The upstream end of the tube was connected to a detector that transmitted an

audible signal whenhalogen was present. Freon gas was sprayed at the swirl

cup exit with the detection tube tip in one position, and whena signal was
recorded it was considered an indication that the recirculation zone extended

at least to that particular tip location. The procedure was repeated with the

tube movedto a new upstream position until no further signal was transmitted
by the detector. That location was then identified as the limit of the recir-
culation zone.

6.2.2.2 Experimental Test Results

Each of the simulated pilot and main stage domes of the E 3 combustor were

tested on the visual stand with several sleeve inserts varying in included angle
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between 0 ° (cylindrical) and 90 ° Although the quality of the fuel spray

atomization and the spray angle for most sleeve configurations was acceptable,

stable spray (single angle) was obtained only with 45 ° or less included-angle

sleeves. The estimated spray angle obtained with the 45 ° sleeve was approxi-

mately 59 ° at inlet conditions simulating ground start conditions. Sleeves

with an included angle larger than 70 ° had extremely wide fuel sprays which

tended to attach to the splash plate. This type of fuel spray was judged as

unsatisfactory, for it tends to locate much of the fuel along the combustor

liner wall, often resulting in high idle emissions and hot streaks on the com-

bustor liners. Sleeves with angles between 50 ° and 70 ° initially produced

stable fuel sprays, but when perturbated by an outside mechanical disturbance,

the spray became attached to the splash plate. Table XX gives a summary of

spray stability results for the various sleeve configurations tested.
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Table XX. Fuel Spray Visualization Test Results.

Emissions Sleeve-

Included Angle (_), degrees

0 (Cylindrical)

15

45

50

60

70

90

Results

Stable - Very Narrow Spray Angle

Stable - Very Narrow Spray Angle

Stable - Wider Spray Angle

Semistable - External Disturbance

Unstable - No Disturbance

Unstable - No Disturbance

Unstable - No Disturbance



Patternation tests were concentrated on the 45 ° sleeve because it produced

the most desirable fuel spray stability and spray angle. Configurations fea-

turing this type of sleeve produced desirable symmetrically double-peaked fuel

mass distribution (see Figure 86). As shown in Figure 87, the 70 ° sleeve con-

figuration further produced the double-peaked distribution. However, the bulk

of the fuel was concentrated at a big, wide angle.

Varying the fuel nozzle tip immersion and/or eccentricity relative to the

swirl cup centerline axis had no significant effect on the fuel spray stability.

But some slight effect on fuel distribution symmetry was observed.

The wedge probe surveys were conducted on the configuration with a 45 °

included-angle sleeve to identify the velocity profile at the exit plane of

the dome and to estimate the size and intensity of the recirculation zone.

Similar surveys were conducted on the pilot and main stage swirl cups. The

results of the surveys are presented as plots of axial velocity versus the

radial distance from the centerline in Figures 88 and 89. The plots indicate

that the diameter of the recirculation zone is approximately 2.3 cm (0.9 in.)

for the pilot stage cup and 2.0 cm (0.8 in.) for the main stage cup at a plane

flush with the mounting plate. The halogen detector tests indicated that the

depth of the recirculation zone upstream of the mounting plate was found to

equal 1.63 cm (0.64 in.) for the pilot stage and 1.55 cm (0.61 in.) for the

main stage.

6.2.2.3 Concluding Remarks

The swirl cup test results indicated that the geometry of the emissions

reduction sleeve has a significant effect on the spray stability and fuel

distribution. Using a sleeve with a 45 ° included angle in either the pilot

stage or main stage swirl cup designs of the E 3 sector combustor produced

the most desirable fuel spray characteristics necessary for reducing emissions

levels. The baseline configuration pilot and main stage swirl cup recircula-

tion zones were determined to be satisfactory in terms of strength and pene-

tration. Based on these results, it was decided to use the 45 ° angle sleeves

for the baseline configuration of the sector combustor.
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6.2.3 Dome Metal Temperature Tests

6.2.3.1 Introduction

The initial E 3 double-annular combustor design specified 4.3% of the

combustor airflow for the pilot dome splash-plate cooling. This level of

cooling airflow was predicated on the expectation that low dome cooling flows

result in lower carbon monoxide (CO) and unburned hydrocarbons (HC) emissions

levels at ground idle operating conditions. Also, the surface area of the E 3

pilot dome is smaller than for a conventional single-annular configuration.

Although splash plate cooling is strongly dependent on dome geometry, the

selected airflow level for the E 3 pilot dome is relatively low when compared

to those of existing GE combustors. Therefore, the adequacy of the splash

plate cooling airflow selected for the E 3 pilot dome design was questioned,

in light of past design practices.

The dome metal temperature tests were designed to determine the effective-

ness of the pilot stage dome cooling and the impact of this unconventional low

dome cooling airflow level on the life of the combustor hardware. The test rig

availability also provided a good opportunity to investigate the effects of

burning broad specification fuels on the dome metal temperatures in back-to-

back tests.

6.2.3.2 Dome Design and Evaluation Approach

The approach chosen to conduct the dome metal tests was that of using a

single-cup setup to simulate the E 3 dome design. Similar test configurations

have been used extensively for this purpose in other programs. The simulated

E 3 pilot stage dome was constructed from a combination of available E 3 sec-

tor combustor swirl cup hardware and modified hardware from previous develop-

ment programs. The dome assembly (see Figure 90 for hardware items) as tested

consisted of the following hardware:

• Fl01-type dome plate modified in size, cooling hole pattern, and

area to approximate the E 3 pilot stage dome

• F101-type splash plate also modified to simulate the E 3 pilot

stage dome plate in size and shape
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NASA/Experimental Clean Combustor Program (ECCP)-type primary swir-

let with an effective flow area approximately equal to the E _

primary swirler area

FlOl-type emissions reduction sleeve with a 70 ° included angle

E 3 sector combustor pilot stage secondary swirler

E 3 sector combustor carbon-preventing venturi

FlOl-type simplex fuel nozzle tip.

The dome plate, splash plate, venturi, and sleeve were instrumented with

thermocouples at critical locations (Figure 91). To obtain accurate metal

temperatures of the hardware close to the combustion gas, the splash plate

thermocouples, venturi thermocouples, and sleeve thermocouples were embedded

in the metal surface.

The assembled dome hardware was welded to a can-type liner and mounted

inside a plenum in the test facility as shown schematically in Figure 92. The

tests were conducted at the General Electric-Evendale ACL Cell A5E test fac-

ility. This facility has capabilities for testing components at high pressure,

high temperature conditions. An indirect gas-fired heater is utilized to heat

the inlet air supplied to the test piece. Nominal facility limits are 840 K

(1052 ° F), 18 atmospheres, and 5.5 kg/sec (12.1 lh/sec).

The test point schedule for the dome metal temperature tests is shown in

Table XXI. The test parameters shown in the table simulate actual E 3 com-

bustor inlet conditions at the key cycle operating points indicated. The air-

flow levels were approximated by setting similar pressure drops to those cal-

culated in the cycle conditions. Fuel flows were selected to cover a wide

range of fuel-air ratios including the design levels.

150



o

!

315° I

• oai ooQ • •

T/ " "
° e e ° °e ° ° °

T

225 °

OF PO0;_ C2L;AL i't'_{

45 °

TIc

_. T/C

135 °

315 °

225 °

0 °

0

._TIc T.Ic 45 °

Dome Plate Splash Plate

Venturi

Sleeve

Figure 91. Dome Metal Temperature Test Instrumentation.

151



ORIGINAL PAGE ;9

OF POOR QUALITY

,-.-I

IT
J/

J

O
,-4

.r-I

._J

G,I
[-_

..i-I

QJ

O

_J

¢,0

152



OF POOR QUALFFF

Table XXI. Dome Metal Temperature Test Point Schedule.

Point

i

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

Engine

Condition

Simulated

SLTO

Approach

TT 3
K (°F)

i

!r
Cruise

PT 3
at,,,

11.84

Ir
12.86

If Iv
(Derated) 19.05

i

i

I

i

i

I

!

II I,

667

(740)

782

(948)

]r

814

(1005)

J
I

,r

Wf

kg/hr

(ib/hr)

45.8

(20.8)
76.7

(34.8)

107.5

(48.8)
45.4

(20.6)

57.2

(25.9)

46.3

(21.0)

76.7

(34.8)

107.5

(48.8)
45.4

(20.6)

57.2

(25.9)

67.1

(30.4)

111.6

(50.6)

136.1

(61.7)

74.8

(33.9)
83.O

(37.6)

AP

atm

0.592

0.592

0.592

0.415

0.653

0.643

0.643

0.643

0.449

0.707

0.952

0.952

0.952

0.667

1.048

AP/P

%

5.0

5.0

5.0

3.5

5.5

5.0

5.0

5.0

3.5

5.5

5.0

5.0

5.0

3.5

5.5
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The test procedure consisted of setting the combustor inlet pressure,

inlet temperature, combustor pressure drop, and combustor fuel flow for each

test point in the test point schedule. Steady-state readings of all instru-

mentation were then recorded. Three complete test runs through the point

schedule were made. The first run was conducted with Jet A fuel, the second

with ERBS-type fuel, and the third with marine diesel fuel. During the tests

a 1255 K (1800 ° F) limit was imposed on all thermocouple-indicated tempera-

tures to reduce instrumentation attrition and prevent hardware damage.

At the end of each test run a flashback test was conducted to determine

if burning could be detected upstream of the swirl cup venturi throat during

a fuel flow chop. A flashback test consisted of resetting the combustor inlet

conditions specified for Test Point 12. These aero operating conditions were

held constant while the fuel flow was rapidly decreased from 112 to 44 kg/hour.

When a fuel flow of 44 kg/hr (20 Ib/hr) was reached, the fuel flow was rapidly

increased back to 112 kg/hour (50.8 Ib/hr).

After completion of each test run, the test rig was opened at the aft end

for visual inspection of the swirl cup and dome hardware.

6.2.3.3 Experimental Test Results

To stay within the 1255 K (1800 ° F) limit on all of the thermocouple read-

ings, the overall fuel-air ratio was limited to 0.021 corresponding to a dome

fuel-air ratio of 0.101. This fuel-air ratio is significantly higher than

that which either the pilot dome or the main dome would experience during nor-

mal operation of the engine.

For simulated sea level takeoff (SLTO) operation, peak metal temperatures

recorded for the splash plate, dome plate, and sleeve were 1216, 939, and 1107

K (1730 ° , 1230 ° , and 1533 ° F), respectively, at a dome fuel-air ratio of 0.088.

Based on these results peak metal temperatures of 989 K (1320 ° F) for the pilot

stage and 1041K (1414 ° F) for the main stage would be expected at the FPS sea

level takeoff operating conditions. The estimated increase in metal tempera-

ture to account for the derated pressure conditions is approximately 60 K

(lOS"F).
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The SLTOconditions are the most severe conditions that the combustor will

encounter under normal operating conditions. As expected, the recorded peak

domemetal temperatures at approach and maximumcruise conditions were signif-

icantly lower than those obtained at SLTOconditions and, therefore, represent

no threat to domehardware integrity. Figure 93 presents a plot of the

splash-plate metal temperatures recorded versus fuel-air ratio at all three

engine operating conditions simulated. Table XXII presents a summaryof the

expected domemetal temperatures for each of the conditions during full-annular

combustor testing.

The results of the domemetal temperature tests, whenusing ERBSand

marine diesel fuels, were nearly identical to those obtained whenusing Jet A

fuel. All domemetal temperatures followed a similar pattern and showedsim-

ilar dependenceon fuel-air ratios. Whentesting with marine diesel fuel at

simulated SLTOconditions and high fuel-air ratio (Point 13), an unstable con-

dition was encountered with the splash plate and sleeve metal temperatures

fluctuating widely. The explanation for the fluctuating temperatures was an

unstable fuel spray. Fuel spray instability was caused by the combinedeffect
of airflow and fuel-flow momentums. However, because this condition was

encountered only with diesel fuel, it is possible that the fuel properties
were a contributing factor.

Hardware inspection at the conclusion of testing with marine diesel fuel

revealed a thin film of carbon deposited on the splash-plate surface. Since

the test rig was not inspected between the ERBSand diesel fuels tests, it is

uncertain as to which fuel caused the deposits. Inspection of the hardware

after the Jet A fuel tests revealed no carboning.

6.2.3.4 Concludin_ Remarks

The following conclusions were derived from the dome metal temperature

tests:

i. Airflow levels selected for pilot stage dome splash-plate cooling

will be adequate in keeping the dome hardware metal temperatures

at acceptable levels during the E 3 Combustor Development Test

Program. Specifically, the 4.3% of total combustor airflow

selected for the pilot stage splash-plate cooling is sufficient

to maintain metal temperatures below 1100 K (1520 ° F) under the
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most severe combustor operating conditions expected. The main

stage dome splash plate has a smaller surface area than the pilot

stage; hence, an equal level of splash-plate cooling airflow is

expected to be at least as effective as in the pilot stage.

The relatively cold fuel impinging on the inside of the venturi

provides excellent cooling and maintains the venturi metal tem-

peratures at levels near the combustor inlet air temperature levels.

As measured from the tests, dome metal temperatures closely agree

with temperatures measured during similar single cup, high pressure

tests previously conducted in other development programs.

The burning of broad specification fuels, such as ERBS and marine

diesel, had only a very minor effect on dome metal temperatures.

With the exception of a slight carbon deposition on the splash-

plate surface when using these fuels, results from all tests were

identical in terms of peak metal temperature location on hardware.

6.2.4 Sector Combustor Tests

6.2.4.1 Introduction

The Sector combustor tests constituted the major part of the E 3 sub-

component testing program. They were intended to develop the E 3 combustor

performance characteristics including ignition, emissions, exit temperature

profiles, efficiency, and altitude relight. The sector combustor tests were

planned to run parallel to the full-annular development program to permit

refinement and investigation of any of these performance characteristics with-

out interrupting the full-annular testing effort.

6.2.4.2 Design Approach

A five-cup, 60 ° annular sector combustor was selected as the test vehicle.

This sector combustor was designed to duplicate the aerodynamic flowpath and

physical dimensions of the baseline design of the E 3 engine combustor. It

was fabricated from prototype hardware because of the shorter manufacturing

cycle. The prototype swirlers used were machined parts welded together, while

the development swirlers were made from castings of the complete swirler unit.

The sector combustor liners were fabricated from sheet metal panels, spin

formed into shape rather than brazed together, while the development combus-

tot liners were machined from forgings. These differences in manufacture were

not expected to result in any performance discrepancies.
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The E 3 sector combustor featured a double-annular dome design with an

outer pilot stage and an inner main stage like the full-annular development

combustor. Key design features of the E 3 double-annular combustor included

an axial primary, radial secondary counterrotating swirl cups, a carbon-pre-

venting venturi, and an emissions reduction sleeve in pilot and main stages.

The original design called for 90 ° included angle sleeves; however, these were

modified to 45 ° angle sleeves in the sector combustor baseline configuration

based on the results of the swirl cup investigation. The combustor stages are

separated by a film-cooled centerbody structure. Each of the combustor liners

consisted of three panels, also film cooled. The baseline inner and outer

liner design also featured Panel 2 primary dilution holes and Panel 3 trim

dilution holes located in-line with swirl cups. The primary dilution hole

design was an extended dilution tube to simulate the thimble design featured

on the engine combustor design. Figure 94 shows a cross section of the sector

combustor and its key components. Figure 95 presents a photo of the assembled

sector combustor hardware. The flow area distribution for the baseline sector

combustor is presented in Table XXIII.

The sector combustor design included a split duct diffuser that also dup-

licated the design and flowpath of the full-annular combustor diffuser includ-

ing diffuser bleed at the strut location.

6.2.4.3 Test Rig and Instrumentation

A schematic of the E 3 sector combustor test rig is shown in Figure 96.

The test rig was designed to house the five-cup, 60 ° sector combustor and to

operate at up to 4 atmospheres of pressure and 750 K (890 ° F) of temperature

at the combustor inlet. It consisted of the inlet plenum chamber and the

diffuser sector combustor and combustor exit instrumentation sections.

The inlet plenum chamber section of the test rig was attached to the test

facility air supply. This plenum consisted of a large-diameter pipe which

served as a flow conditioner before the air entered the diffuser passage. The

sector combustor diffuser was housed in another plenum just downstream of the

inlet plenum. The diffuser was a single-passage inlet with a split duct exit

that provided the desired flow split between the two combustor stages. A

photo of the diffuser section (discharge) and housing is shown in Figure 97.
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Table XXIII.

Outer Liner

Cooling Row 1 + Ring

Cooling Row 2

Cooling Row 3

Cooling Row 4

Primary Dilution
Trim Dilution

Total Outer Liner

Flow Area Distribution for Baseline

Sector Combustor Configuration.

Cooling

Area_ cm 2 (in 2)

1.84 (0.28)

1.21 (0.19)

1.07 (0.16)

0.66 (0.10)

1.25 (0.19)

0.80 (0.12)

6.83 (1.06)

Total Area_ %

3.55

2.33

2.07

1.28

2.40

1.54

13.18

Inner Liner

Cooling Row 1 +

Cooling Row 2

Cooling Row 3

Cooling Row 4

Primary Dilution
Trim Dilution

Total Inner Liner

Ring Cooling 1.86 (0.28)

2.00 (0.31)

1.47 (0.23)

1.08 (0.17)

1.81 (0.28)

0.75 (0.12)

8.03 (1.24)

3.60

3.87

2.84

2.09

3.50

1.46

15.49

Centerbody

Outer Cooling Row 1

Outer Dilution

Outer Cooling Row 2

Multijet

Inner Cooling Row 1

Inner Dilution

Inner Cooling Row 2

Total Centerbody

+ Ring Cooling

+ Ring Cooling

0.72 (0.11)
1.64 (0.22)

0.37 (0.06)

0.59 (0.09)

1.16 (0.18)

1.82 (0.28)

0.59 (0.09)

6.90 (1.07)

1.38

3.16

0.72

1.15

2.24

3.15

1.15

13.93

Pilot Dome

Swirl Cups

Splash-Plate Cooling
Total Pilot Dome

9.77 (1.51)

3.94 (0.61)

13.71 (2.13)

18.86

7.61

26.47

Main Dome

Swirl Cups

Splash-Plate Cooling

Total Main Dome

13.68 (2.12)
2.66 (0.41)

16.34 (2.53)

26.40

5.13

31.53

Total Area 51.81 (8.03) I00
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The combustor housing section was attached to the diffuser discharge and

contained the fuel delivery system and the sector combustor. The fuel was

supplied to the 10 fuel nozzles through a double-manifold system. One mani-

fold supplied the five pilot stage nozzles (outer annulus), the other supplied

the five main stage (inner annulus) nozzles. The fuel manifold system could

be operated independently. The instrumentation section of the test rig housed

the rake assembly used to measure exhaust gas temperatures or to obtain gas

samples for emissions measurements, depending on the type of rake installed.

Test rig instrumentation included various thermocouples and pressure

probes in addition to the exhaust rake system. The thermocouples and pressure

probes were used to obtain temperature and pressure data critical to rig oper-

ation, combustor performance, and mechanical integrity. The pressure measure-

ments included (i) diffuser inlet total and static pressures, (2) diffuser

exit total and static pressures, (3) dome upstream total and dome downstream

static pressures, and (4) liners hot- and cold-side static pressures. The

total pressure at the combustor exit was measured using the gas sampling rake

elements. These pressure measurements were employed in calculating combustor

inlet velocity, pressure drops of the domes and liners, and overall combustor

pressure drop.

Temperature measurements were made of the rig inlet airflow and on inner/

outer liner surfaces and on centerbody surfaces. Combustor exit temperature

profiles were measured using four chromel-alumel thermocouple rakes installed

in the instrumentation section of the test rig. Each of the exit rakes had

seven thermocouples equally spaced on the leading edge of the rake and covered

the entire sector combustor exit passage height. Several thermocouples were

also located downstream of the instrumentation section in the facility exhaust

system to monitor the facility operation.

The sector combustor exhaust gas samples were extracted from the exhaust

flow by means of four gas sampling rakes installed, when required, in the

instrumentation section of the test rig. Each of the gas sampling rakes had

five sampling elements. The four rakes could be individually sampled or man-

ifolded together to provide an average circumferential sample. Each of the

five sampling elements was designed with a quick-quenching probe tip. In this
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design, the chemical reaction of the gas sample is quenched as soon as the

sample enters the rake. Quenching is necessary to suppress any further chem-

ical reaction of the gas sample within the sampling lines. Both water cool-

ing of the rake body and steam heating of the gas sample lines within the rake

were incorporated into the design. Water cooling of the rake body was

required to protect the rake from damage due to the high temperature environ-

ment created at the combustor exit. Steam heating of the gas sampling lines

was employed to prevent condensation of hydrocarbon compounds and water vapor

within the sampling lines. A photo of a gas sampling rake is shown in Figure

98 and a schematic of typical sampling element is in Figure 99.

6.2.4.4 Test Facility

All E 3 sector combustor testing was conducted in the Advanced Combustion

Laboratory Facility, GE-Evendale Building 306. This facility is equipped with

the inlet ducting, exhaust ducting, controls and instrumentation necessary for

conducting sector combustor tests. The range of operating conditions obtain-

able in this facility is limited because of the airflow and heater capacity

currently available. Airflow levels up to 2.8 kg/sec (6.17 Ib/sec) can be

supplied to the facility from a large compressor, plus an additional 1.8 kg/sec

(3.97 ib/sec) can be supplied by the Shop Air System. Combustor inlet air

temperatures above ambient are obtained using the facility liquid fueled indi-

rect-air preheater. The preheater has the capability to heat 1.35 kg/sec

(2.98 Ib/sec) airflow to 700 K (800" F). Jet A fuel was supplied to the sec-

tor combustor test rig by a pipeline from storage tanks located adjacent to

the facility. Instrumentation cooling and exhaust gas quenching was accom-

plished using the facility domestic water supply with pressure boost where

necessary.

In addition, the facility has the capability of simulating altitude con-

ditions with the aid of a steam ejector system. This system allows the oper-

ator to reduce test rig pressure to 0.30 atmospheres. However, the facility

does not have cold air or cold fuel capability. Therefore, all the altitude

ignition testing was conducted at ambient air and fuel temperatures.

Test conditions were monitored using the facility instrumentation readout

equipment. Airflows were monitored by manometer readings of pressure drops
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Intermediate Structure

Leading Edge of

Probe Body

0.21 cm_

(0.082 in.)

0.51 cm

(0.200 in.)

0. i0 cml

(0.040 in.)

Copper Tip

Stainless Steel

Sample Tube

Cooling Steam Heating

Water _ 45OK

_290-310 K (810 ° F)

(522°-558 ° R)

Figure 99. Schematic of Typical Rake Sampling Element.
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across a standard ASMEorifice in the air supply line. Fuel flows were

metered by turbine-type flowmeters whose signal was input to an electronic

frequency readout meter. Test rig pressures were monitored by either mano-

meters or pressure gages, and thermocouple readings were obtained by self-

balancing potentiometer recording instruments.

Sector combustor emissions were measured using the CAROL (Contaminants

Are Read On Line) gas analysis system located in the test facility. This

system consisted of the following instruments:

• Beckman Model 402 total hydrocarbon analyzer (flame ionization

detector)

• Beckman Model 315-A carbon monoxide and carbon dioxide analyzer
(NDIR)

• Beckman Model 915 No x analyzer (chemiluminescence with converter,

trap required).

Extracted exhaust gas samples were transmitted to this analysis equipment

and the measured emissions levels were recorded on strip charts. An adequate

supply of bottled calibration gases for the CAROL system was maintained

throughout the emissions testing. A qualified technician calibrated and oper-

ated the CAROL system throughout the duration of data acquisition for each

emissions test.

6.2.4.5 Test Procedures

The conditions selected for conducting the sector combustor ground start

ignition tests simulated E 3 combustor inlet conditions at various core speeds

from the E 3 sea level standard day start model. The initial tests were con-

ducted at atmospheric conditions with the instrumentation section of the test

rig removed to allow for visual observation and monitoring of the ignition

performance. The procedure for these tests entailed the following: An air-

flow level and temperature simulating a set of conditions from within the E 3

start model were set. The ignition source was activated and the pilot stage

fuel flow was slowly increased. The fuel flow was recorded when at least one
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cup was lit. With the ignition source now deactivated, fuel flow was further

increased and recorded where each cup was lit until full propagation (all

five cups) of the pilot stage was achieved. Then the fuel flow was decreased

and the level at which each cup extinguished was recorded. The procedure was

repeated until sufficient data repeatability was obtained.

In 1979 the engine startup procedure was revised to require operating

the combustor on both stages up to idle speed, at which point the main stage

would be shut off. This required crossfiring the main stage as soon as the

pilot stage was fully propagated. Hence, a major portion of the ground start

ignition tests were devoted to developing crossfire performance. Once the

pilot stage was fully propagated, the fuel flow was set at a level slightly

above the pilot lean blowout limit, when main stage fuel flow was introduced

and increased slowly until one or more main stage cups were lit. The fuel

flow was recorded, then recorded again when all cups were lit. Main stage

lean blowout fuel flow levels were established in a procedure similar to

that followed for the pilot stage.

For promising sector combustor configurations, a pressure ignition test

was conducted with the instrumentation section of the test rig attached.

These tests followed a similar procedure to the atmospheric ignition tests,

except in this case ignition was determined by monitoring thermocouples sit-

uated at the exit plane of the sector combustor downstream of each swirl cup.

Actual pressures from the E 3 start cycle were set for the pressure ignition

tests. Table XXIV presents the test points and corresponding operating con-

ditions for the ignition tests.

Sector combustor performance evaluation tests consisted of conducting

exit temperature surveys at ground start conditions for the calculation of

combustion efficiencies and at simulated SLTO conditions to establish exit

temperature profiles. Ohter data obtained during these tests included pres-

sure drops and metal temperatures. The temperature surveys were conducted

using the four 7-element controls/accessories thermocouple rakes located in

the instrumentation section of the test rig. During ground start efficiency

tests, various core speeds, ranging from 46% to 77%, were evaluated with either

pilot only or staged operation. The sea level takeoff temperature profile
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test conditions were limited by the available facility pressure level (~4

atmospheres). The proper inlet temperatures, combustor fuel-air ratios, and
Machnumberswere set in the test rig. Exit temperature profiles were then

recorded for various pilot-to-main-stage fuel flow splits at a constant over-
all combustor fuel-air ratio.

Table XXIV. Sector Combustor Ignition Test Point Schedule.

• Based on E3 9/27/79 Start Model

• Sector CombustorFlow Conditions (Annular Flow/6.0)

Pressure Test

W c

XNRH P3 T 3 kg/sec Wc#T3

% atm K (° F) (Ib/sec) P3

21 1.020 295 0.21 3.54

(71) (0.46)

58 1.837 383 0.57 6.07

(230) (1.26)

70 2.463 427 0.79 6.63

(309) (1.74)

Atmospheric Test

21 1.0 295 0.20 3.54

(71) (0.44)

32 1.0 314 0.25 4.43

(i05) (0.55)
46 1.0 344 0.28 5.19

(160) (0.62)

58 1.0 383 0.31 6.07

(230) (0.68)

70 1.0 427 0.32 6.63

(309) (0.71)
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All sector combustor instrumentation readings, including static pres-

sures, total pressures, and thermocouples, were recorded throughout these

tests. The recorded data was used in calculating domeand liner pressure
drops, overall combustor pressure drops, and the conditions for and locations
of highest metal temperatures.

The test conditions for the sector combustor emissions tests included

low power, as well as simulated high power operating conditions along the
standard day sea level static E3 FPSoperating cycle. The low-power con-

ditions included ground idle at 4%and 6%of SLTOpower with the pilot

stage only fueled, and the EPA-defined 30%power (approach) operating

condition with both pilot only and staged combustor operation. The high

power conditions tested simulated the 85%power (climbout) and SLTOopera-
ting conditions in the staged combustor operating mode.

For low power emissions tests, true combustor operating conditions were

duplicated in the sector combustor test rig. However, for higher power emis-

sions tests the combustor flow function was simulated by derating the test

rig inlet conditions in order to be consistent with the test facility limits.
For all of the sector combustor test rig conditions, data were obtained over

a range of combustor fuel-air ratios. A summaryof the test point schedule
for the emissions tests is presented in Table XXV.

The combustor inlet conditions and corresponding fuel-air ratio for each

point were set, then the fixed combustor instrumentation readings were

recorded. Exhaust gas samples were extracted by using the gas sampling rakes,

and the pollutant emissions data from the gas analysis system was recorded.
The normal procedure was to obtain a ganged sample from all four rakes simul-

taneously. However, for points of particular interest, individual samples
from each rake were obtained and analyzed, as well.

The altitude windmilling characteristics for the E3 engine were not

defined prior to testing, therefore, the CF6-50engine windmilling mapwas

used as a substitute in order to investigate the altitude relight capability
of the E3 sector combustor. Acutal pressures at altitude were set during

these tests. However, ambient temperature inlet air and fuel were used. The

tests consisted of determining the ignition and lean blowout limits over a

172



n_
Q)
,c

c
.,-4

o

J.J

E_

C
0

_n
cn
.,-4

0
J.J

o

o
J_J

.m

[-_

o
,-4 aJ
•_ o

,--4

1-4

U.4

,.,_ aOO_ _D__1) ID.

"3
,-_ ,.c ..c

,.-_ CL
,._ (:_ ID.,

_q

[,.,

o

O_v

_S

C
o

U .,.4

C
o

oooo
oooo ooooo o_

o oooooooooo

oooooooooo

o_oo o_ooo _o_o

oo o o o o oo o o oo o

o o o o o o ooo o o o o

o o o_ o _ o o_ _

o oooooooooo

oooooooooo

oooo ooooo

_ oo ...... o o

_ _ _ _ _ _ o oo o o o o o o o o

oooo ooooo oooo _ ___6_

__ __ 0 0000000000

0000 00000 0000 0 0000000000

__ ,°°,, °,,, °°,°,°°,,,

_ _ _ _ _ __ 0 00000 O0 O00

0000 0000 0 O0000 O0000

o

• _ .,-_ _,._

•_ "_ ._ _) _ o

173



selected range of windmilling conditions. The sector combustor inlet condit-

ions were set, fuel flow initiated, and fuel flow levels at which each cup

ignited were recorded. Then fuel flow is slowly decreased, and levels at

which each cup was extinguished were recorded. For some conditions where

ignition was unsuccessful, inlet pressure was slowly increased while holding

a constant fuel flow until ignition was obtained.

6.2.4.6 Data Reduction Procedures

The recorded data of the ground start ignition tests and the altitude

relight tests were simply reduced by calculating ignition and lean blowout

fuel-air ratios for each test point and presenting the results as plots of

fuel-air ratios versus either core speed or combustor inlet conditions.

Exit temperature profiles were obtained from plots of the thermocouple

rake data to which a radiation correction factor had been applied. Combustion

efficiencies were determined from rake data by calculating the ratio between

the average of the measured exit temperatures and the theoretical gas tem-

perature for the test fuel-air ratio.

Various sector combustor pressure drops and airflow distributions were

calculated from recorded test data and the known effective flow areas of the

sector combustor hardware by using a computer data reduction program.

Emissions data reduction was accomplished using two data reduction com-

puter programs. One program performed curve-fit calculations on the CAROL

system calibration data obtained at the start of an emissions test. Cali-

bration checks of the gas analysis system were performed before and after

each emissions test run to prevent data drift. During a test, the measured

emissions data were recorded on chart recorders contained within the CAROL

system. The emissions data were additionally recorded on test log sheets.

Following the completion of each test run, the emissions data, along with the

sector combustor performance data, were input into the other data reduction

program where the reduction of the raw emissions data to emissions indices

was performed. The calculation equations used in this program were basically

those contained in SAE ARP 1256. In these calculations the CO and CO 2 con-

centrations were corrected for the removal of water from the sample before
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analysis. A fuel hydrogen-to-carbon atom ratio of 1.92, representing Jet A
fuel, was used in these calculations. Calculated combustion efficiency, sam-

ple fuel-air ratio, and an overall emissions index were also obtained from
the data reduction program. The overall emission index represents a weighted

average of the values obtained from each individual gas sampling rake and is
defined as

EIj (Overall)

N
(El.). * (F/A Sampled).

j i i
i=l

N

Z (F/A Sampled).
i

i=l

The j subscript refers to the identity of the gaseous pollutant (CO, HC,

or NOx) , and the i subscript refers to the individual rakes where N repre-

sents the total number of gas sampling rakes. Expressing the average of the

emissions in this form reduces the influence of very lean combustion zones

within the combustor where the concentrations of gaseous pollutants is low, but

where the calculated emissions indices are quite high. These weighted average

emissions values are presented in the numerous data tables and figures of this

report.

At the high-power operating conditions where the combustor inlet pressure,

temperature, and airflow were derated due to facility limitations, the measured

emission levels were adjusted to reflect the actual engine cycle conditions.

The adjustment relations used are defined in Appendix D.

6.2.4.7 Test Confisurations

A total of seven basic configurations were tested during the E 3 Sector

Combustor Test Program. Some of these configurations were subjected to "piggy-

back" tests, with one or more of their features somewhat varied to investigate

specific performance aspects. A brief description of each of the configu-

ration's features (relative to the baseline configuration) is presented below.
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The following modifications to the baseline configuration design were

incorporated for the Mod I configuration:

• Primary dilution holes in the outer and inner liners were relocated
to between swirl cups from in-line with cups in the baseline con-
figuration. This modification was introduced in order to achieve
a more uniform fuel-air mixture balance between the two zones.

• Ninety-degree-angle sleeves replaced the 45° angle sleeves featured

in the baseline design. These wider angle sleeves were expected

to produce a more dispersed fuel spray; this was desired in spite

of anticipated problems with spray instability. The 45 ° sleeve had

been selected based on swirl cup investigation results. But when

installed in the sector combustor, these sleeves appeared to pro-

duce a somewhat more narrow spray angle than was desired, leading

to a fuel-rich zone in between the cups. The wider angle sleeve

did produce a more uniform primary zone fuel-air ratio distribution

and had no observable instability problems.

• Pilot dome splash plate cooling was reduced by approximately 40%

to bring it closer to the originally intended design level of 4.3%

of the combustor airflow. This change was expected to help the CO

emissions, particularly at idle conditions.

The Mod II configuration featured the incorporation of the E 3 full-

annular development combustor-type swirl cups to replace the prototype swirlers.

Furthermore, this configuration had a modified airflow distribution charac-

terized by a reduction in the pilot stage swirl cup airflow and by an increase

in the main stage for the purpose of reducing NO x emissions at high power

conditions.

The Mod III configuration of the E 3 sector combustor featured changes

that were directed primarily at improving ignition performance. Key changes

included a substantially reduced main stage swirl cup airflow and the use of

full-annular development-type fuel nozzles in both stages in order to dupli-

cate the full-annular combustor fuel system design. In addition, a crossfire

tube, similar in design to that of the full-annular combustor, was incorporated

into the centerbody to provide an ignition source for the main stage. Up to

this point, main stage ignition had been achieved by means of an auxiliary

ignition system installed through the sector combustor sidewall. The 90 ° angle

sleeves were retained in the Mod III because none of the anticipated fuel

spray instability problems had occurred. In order to determine the effects of
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the fuel nozzle spray angle and the fuel nozzle shroud air on CO and HC emis-

sions levels, several fuel nozzle configurations were tested in the Mod III

configuration for emissions at the 6% ground idle conditions. There were three

variations: Mod III-A differed from Mod III by blocking off the fuel nozzle

shroud air, Mod III-B featured the prototype simplex peanut fuel nozzles in

place of the development nozzles, and Mod III-C utilized air shrouded, deve-

lopment-type fuel nozzles rated at 23 kg/hr (50.7 Ib/hr).

For the Mod IV configuration, the pilot stage primary dilution airflow

was increased to double the Mod III configuration level in order to provide

more penetration and enhance mixing of the fuel and air to reduce idle emis-

sions. Furthermore, the centerbody multijet length was shortened by approxi-

mately 1.78 cm (0.70 in.) for mechanical considerations. These two design

changes were evaluated during Mod IV configuration tests of the sector com-

bustor, with emphasis placed on evaluating whether a shorter centerbody would

adversely affect the ignition and low power emissions performance.

The Mod V configuration of the E 3 sector combustor featured a substan-

tial increase in the main stage primary dilution effective area. This increase

resulted in an approximate 7% increase in total sector combustor effective flow

area and caused a reduction in the pilot stage swirl cup airflow as a percent-

age of total airflow. This reduction in swirl cup airflow was expected to

further reduce idle CO and HC emissions, while the increase in main stage pri-

mary dilution flow was expected to reduce NO x emissions at high power com-

bustor operating conditions.

The Mod VI configuration featured a simultaneous reduction in the swirl

cup airflow level and an increase in the primary dilution airflow level of the

sector combustor pilot stage. The swirl cup airflow was reduced by blocking

3 of the 12 vane passages for each of the secondary swirlers. This resulted

in a reduction of approximately 20% of the pilot stage swirl cup airflow in

relation to the Mod V configuration. The pilot stage dilution airflow was

increased by opening up the flow area of the dilution holes in the outer liner

and the pilot stage side of the centerbody. In addition, 50% of the outer

liner Row 1 and corresponding centerbody cooling holes, located in-line with
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swirl cups, were closed off. All of these modifications were intended to pro-
duce a more uniform fuel-air distribution within the pilot stage domeof the

sector combustor.

Five variations on the ModVI configuration were tested in an effort to

identify any quick design changes that could be implemented in the full-annular

combustor design for the purpose of improving the main stage crossfire per-
formance. In ModVI-A, every other passage in the main stage primary swirler

was blocked and the main stage splash-plate cooling flow was reduced by approx-

imately 30%. This changewas intended to enrichen the main stage domeand

improve the crossfire performance.

For ModVI-B, the blockage from the pilot stage secondary swirler was

removedto permit a stronger recirculation zone and possibly force a larger

flame through the crossfire tube into the main stage. In Mod VI-C, an exten-

sion was added to the main stage side of the crossfire tube. The purpose of

the extension was to shelter the flame passing through the tube and prevent

it from being swept downstream by the swirl cup flow. Another extension,

added to the pilot stage side of the crossfire tube, made up the Mod VI-D con-

figuration. The purpose of this extension was to capture the flame from the

pilot stage and force it into the crossfire tube.

The crossfire tube geometry was again modified for the Mod VI-E config-

uration. The originally cylindrical tube was redesigned into a D-shaped cross

section with an area equal to that of the circular design. The intent of this

modification was to move the flow area of the crossfire tube as far forward

on the centerbody as possible.

A summary of the test configurations, their features, their effective-

ness, and their estimated airflow distributions are provided in Appendix E.

6.2.4.8 l_nition Test Results

The atmospheric ignition test results on the baseline configuration

indicated that excessively high fuel-air ratios were required to light the

pilot stage with ignition not attainable at the 21% core speed conditions.
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Full propagation was not possible for any of the test conditions in the E 3

engine starting schedule. For those cups that did light, the fire appeared

to be concentrated in between swirl cups, rather than evenly distributed

across the entire sector combustor. Figure I00 is a plot of the pilot stage

light off and lean blowout fuel-air ratios versus the percent core speed for

the baseline configuration.

Attempts to crossfire the main stage during baseline configuration tests

were unsuccessful; however, the crossfire tube had not yet been incorporated

into the centerbody design, so crossfire had to occur across the tip of the

centerbody.

As was the case for the baseline configuration tests, the initial Mod I

ignition tests were conducted using a hydrogen torch as the ignition source.

An improvement of approximately 20% in the pilot stage ignition performance

was obtained with the Mod I configuration. Furthermore, full propagation was

achieved at all test points, and visual observation of the fire at the sector

combustor exit indicated a more uniform flame. The pilot stage ignition test

results for this configuration are shown in Figure i01. The improvement in

the ignition performance was attributed to reducing the splash plate cooling

airflow in the pilot stage and the wider angle sleeves. On the other hand,

flame uniformity was attributed to relocating the primary dilution to between

swirl cups.

Using a spark plug igniter in place of the hydrogen torch in a subsequent

test on the Mod I configuration resulted in approximately the same light off

and lean blowout fuel-air ratio. Because the crossfire tube was not yet incor-

porated into the design, no crossfire attempts were made on this configuration.

However, the main stage ignition performance was investigated using a hydrogen

torch igniter installed through the sector sidewall. The results are shown in

FiEure 102. Main stage light-off fuel-air ratios were slightly higher than

those of the pilot stage due to the higher velocities in the main stage dome.

Since the proposed E 3 start sequence required the obtaining of ignition

in both pilot and main stages at a selected core speed, it was necessary for
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the sumof the pilot stage lean blowout and main stage light-off fuel-air

ratios to fall within the specified operating line at that core speed. Figure
103, which plots the results for the Mod I configuration, clearly indicated

that further improvementwas still required to satisfy this start requirement.

The Mod II configuration, which featured development combustor-type swirl
cups in both stages, produced disappointing ignition results. Light-off and

lean blowout fuel-air ratios obtained for the pilot as well as the main stage
were higher than those obtained with the Mod I configuration. Visual obser-

vation of the fire at the sector exit indicated no signs of nonuniformity of
the fuel spray. Yet, posttest fuel spray visualization tests of the swirl cup

fuel nozzle assembly revealed that the development combustor-type swirlers pro-
duced a significantly narrower fuel spray angle than that obtained with the

prototype swirlers. This narrow fuel spray limited the ignition performance

by causing the discharged fuel to be too far away from the ignition source.

Results of Mod III ignition tests were muchmore encouraging than those

of the Mod II results. Figure 104 shows that a reduction of approximately
45%of the light-off and lean blowout fuel-air ratios of the pilot stage was

obtained. As expected, main stage ignition performance approached the perfor-

manceof the pilot stage due to the similarity in the swirl cup airflow levels.

The improvement in pilot stage ignition performance was largely attributed to

the use of the development-type fuel nozzles instead of tile prototype nozzles
used in all earlier tests.

A crossfire tube was also installed in the sector combustor centerbody for

the Mod III configuration; a crossfire test was conducted according to the test

plan. Successful crossfire was obtained for each of the points in the ignition
test point schedule. At low core speeds the crossfire fuel-air ratios were

somewhathigher than the full propagation fuel-air ratios obtained with the

hydrogen torch igniter for this configuration. However, at higher core speeds

the difference in the fuel-air ratio for the two ignition sources was reduced

significantly. This was attributed to the fact that at low core speeds, cross-
fire occurred across the centerbody trailing edge rather than through the
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crossfire hole at high core speeds. Figure 105 compares the crossfire fuel-

air ratio to those obtained using a hydrogen torch ignition in both Mod II

and III configurations.

A plot of the overall combustor fuel-air ratio, required to obtain main

stage crossfire versus core speed, along with the September 1979 E3 ground

start fuel schedule for the Mod III configuration is presented in Figure 106.

This figure indicates that this sector combustor configuration meets the E3

start requirement at core speeds of 53% or higher.

A pressure ignition test, representing actual E3 conditions at the com-

bustor inlet, also was conducted on the Mod III configuration. The results of

this test showed a significant improvement over the atmospheric ignition test

results in both pilot stage ignition and main stage crossfire performances.

Figure 107 presents a plot of fuel-air ratio versus core speed for the Mod III

pressure ignition results. The figure suggests that the E 3 requirement will

be met at core speeds of 38% or higher as compared to the 53% core speed level

obtained from the atmospheric test results.

The ground start ignition test results of the Mod IV configuration were

similar to those of the Mod III configuration results. A shorter centerbody

design had no adverse effects on sector combustor ignition performance. The

only other modification introduced into the Mod IV configuration was increased

primary dilution airflow which was intended for emission reduction purposes

only.

The E 3 sector combustor ignition performance was further improved in

the Mod V configuration. Improvement occurred primarily in the main stage

crossfire performance and was attributed to a decreased swirl cup airflow and

an increased dilution airflow. Figure 108 shows the results of the pressure

ignition test for this configuration, indicating that the E 3 engine start

requirement is met at 32% and higher core speeds.

No net gain in sector combustor ignition performance was realized from

the changes incorporated in the Mod VI configuration. The richer dome in the

pilot stage that was expected to improve its ignition capability was offset

by weaker recirculation due to a reduction in the secondary swirler airflow.
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Hardware modifications, later introduced to the Mod VI configuration

(namely, reducing the main stage swirl cup airflow, adding extensions to the

crossfire tube, and redesigning the crossfire hole geometry), were very effec-

tive in further improvement to the crossfire performance. However, concurrent

with this stage of the sector combustor testing effort, a revised E 3 SLS

standard day ground start cycle was issued. This revised cycle eliminated the

requirement of obtaining ignition in the main stage at subidle conditions. A

pilot stage ignition test using the revised cycle conditions produced excellent

results (Figure 109). At 32% core speed, at which engine start is expected,

the full propagation fuel-air ratio was approximately 0.0130, which was well

below the 0.020 fuel-air ratio specified by the fuel schedule. Since the main

stage ignition is required only above idle, no difficulty was anticipated in

obtaining crossfire from the pilot stage to the main stage.

6.2.4.9 Exit Temperature Performance Test Results

Ground start efficiency tests and exit temperature profile tests were

conducted only on the baseline configuration of the E 3 sector combustor.

Calculated combustion efficiencies at ground start conditions with the pilot

stage only fueled, ranged from 0.58 at 46% core speed to 0.98 at 77% core

speeds. As expected, average exhaust gas temperature (EGT) profiles at these

conditions were peaked outward (Figure 110). In the staged combustor operating

model for the same core speed with equal fuel flow in each dome, the tempera-

ture profiles are relatively flat (indicated in Figure 111). As simulated

SLTO conditions, the temperature profile and combustion efficiency were a

function of the fuel flow split as illustrated in Figure 112. With a fifty-

fifty fuel split, the temperature profile compares favorably with design

limits. However, with a 30/70 pilot-to-main fuel split, the profile is peaked

inboard at the design fuel-air ratio and considered unacceptable.

6.2.4.10 Pressure Drop Performance Results

Pressure measurements were obtained throughout the sector combustor test

effort. Calculated pressure drops from these measurements varied slightly

191



O

O

O

ORIGINAL PAGE IcJ

OF POOR QUALITY

/ /
0 0

0 0

c_ c_

I

//

-I
//
//

0
/

/

/

0

0
Lr_

0

o

o

r.,o

t--I

_J

0
.r-I

:>

_J _

C:_ 0

_ 0
0 ._

0

192



i00

.@

.I-I

0

¢J

.i-I
,=
o,0

::=

O0

o3

.l.J

>¢

0
.I-I

0

80

60

40

20

• 77% Core Speed

• Pilot Only Fueled

P3 = 2.45 atm

T3 = 502 K (904 ° R)

['] f/a = 0.0160

/_ f/a = 0.0130

_) f/a = 0.0100

-0.6

Figure Ii0.

0.2 0.6 1.0 1.4

ATLocal/ATAverag e

E3 Sector Combustor Subidle Exhaust Gas

Temperature (EGT) Profiles (Pilot Only).

1.8

193



194

o

,J=

(U

c_

_J

o
4J

0

lO0

80

60

40:

20

0

ORIG!NAL P_.C_ ;_

OF POOR QUALITY

o 77% Core 'Speed

o Pilot and Main Fueled

P3 = 2.55 arm

T3 = 502 K (904 ° R)

[] f/a = 0.0217
!

f/a = 0.0196

[-

/

\

0.6

Figure 111.

1.0 1.4

ATLocal / AT Average

E 3 Sector Combustor Subidle EGT

Profiles (Staged).



i00

80

4J

60

_Z
O0
.,-I

00

(n
_n

4J

X
40

O

O
_2

20

O

O._ ._._,_ .n." .

OF POOR QUA_.!_!

I

Simulated

SLTO Conditions

Pilot and Main

Fueled

I

WPIWT

O 0.50

0.40

0.30

%

!

T3, K P3,

(o R) Atm

720 (1296) 2.52

713 (1283) 2.52

716 (1289) 2.52

Wt = Total Fuel Flow

Wp = Pilot Fuel Flow

\
\

I

0.2 0.6 1.0 1.4

ATLoc al/ATAverage

Figure 112. E3 Sector Combustor EGT Profiles at Simulated SLTO.
195



according to the effective areas of the configurations. But the overall com-

bustor pressure drop generally comparedwell with the design pressure drop

level of 5%. Figure 113 is a plot of pressure drop versus combustor flow

function for one of the configurations tested.

6.2.4.11 Emissions Test Results

Idle emissions test results for the baseline configuration are presented

in Figure 114. At 6% ground idle conditions, which represent the actual E 3

engine idle power setting, the measured CO and HC emissions were 40.0 g/kg

(40.0 ibm/1000 Ib) of fuel and 4.5 g/kg (4.5 ibm/1000 Ib) of fuel, respectiv-

ely. These levels significantly exceeded the target levels of 20.7 g/kg (20.7

ibm/lO00 ib) of fuel for CO and 2.8 g/kg (2.8 ibm/1000 ib) of fuel for HC.

However, they were considered extremely encouraging for the early stage of the

combustor development. Comparison of individual rake samples indicated that

the between cup zones were significantly richer in fuel than the in-line cup

zones. This observation led to the relocation of the primary dilution to

between cups for the Mod I configuration in addition to using wider angle

sleeves and reducing the pilot stage splash plate cooling. These modifica-

tions did result in a more uniform fuel-air distribution and a subsequent

reduction of approximately 60% in CO and HC emissions to bring their levels

very near the E 3 Program target. A proportional improvement in emissions

levels was also obtained at the 4% ground idle setting. The idle emissions

results for Mod I are shown in Figure 115.

The Mod II configuration, which primarily features the development-type

swirl cups and a reduction in the pilot stage swirl cup airflow, provided the

design with the lowest idle emissions levels obtained during the entire sector

combustor test effort. At 6% ground idle conditions the CO and HC emission

levels obtained were 15.0 g/kg (15.0 Ibm/1000 Ib) of fuel and 1.8 g/kg (1.8

ibm/1000 ib) of fuel, respectively, at the design fuel-air ratio of 0.0122.

With considerable margin, these levels met the E 3 Program target levels for

the two emissions categories. A plot of the CO and HC emissions versus the

metered fuel-air ratio at 4% and 6% idle conditions for this configuration is

shown in Figure i16.
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Replacing the peanut-type fuel nozzles with development-type fuel nozzles

in the Mod III configuration resulted in an increase of the idle emissions to

approximately double the Mod II configuration levels (Figure 117). The devel-

opment-type fuel nozzles are air shrouded and are known to have a signifi-

cantly more narrow spray angle than the prototype nozzles. This narrower spray

angle in combination with the shroud air was the primary cause of the increased

CO and HC emissions levels. Nevertheless, this same narrow spray angle was

thought to be a strong contributor to the improved ignition performance for

the Mod III configuration.

The effect of the fuel nozzle characteristics on idle emissions was

further investigated in the Mod III configuration. Figure 118 shows a plot

of the 6% idle emissions versus the fuel-air ratio for the different types

of nozzles investigated. The lowest CO and HC idle emissions were again

obtained with the prototype peanut nozzles. Eliminating the air shroud from

the development nozzles helped to reduce the idle emissions by approximately

13%; however, shroud air prevents fuel nozzle plugging and carbon buildup on

the venturi discharge surface.

Increasing the pilot stage primary dilution airflow in the Mod IV con-

figuration resulted in only a modest reduction in the CO idle emissions as

shown in Figure 119. But this resulted in a slight increase in the HC emis-

sions. As expected, shortening the centerbody did not appear to have a

significant impact on idle emissions.

The Mod V configuration featured an increased main stage dilution and,

consequently, a richer pilot stage dome, thereby resulting in a significant

reduction in CO and HC emissions at idle (Figure 120). The measured levels

for this configuration at 6% idle and the design fuel-air ratio were 23.0

g/kg (23.0 Ibm/1000 Ib) of fuel for CO and 2.6 g/kg (2.6 Ibm/1000 Ib) of

fuel for HC emissions.

CO and HC emissions increased slightly in the Mod VI configuration as a

result of a simultaneous reduction in the secondary swirler airflow level and

an increase in the primary dilution airflow level of the pilot stage.

Increased dilution alone caused a shift of the CO and HC emissions versus
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fuel-air ratio curves to the right. This resulted in a lower CO emission

level and higher HC emission levels at the design fuel-air ratio for the 6%

ground idle. The results for this configuration are shown in Figure 121.

CO and HC emissions were also measured at simulated EPA landing-takeoff

approach conditions [30% FN(SLTO)] throughout the sector combustor tests.

These emissions data were obtained with the pilot stage only operating mode

and in the staged operating mode. In the pilot only mode at the approach

power operating condition, CO emissions were generaly low [<5 g/kg (5.0 Ibm/

I000 Ib) of fuel], while HC emissions were practically nonexistent for all

configurations tested. With both stages fueled, the CO and HC emissions

varied with the configuration tested. The lowest levels, however, were

obtained with the Mod V configuration which featured a significantly increased

main stage dilution and somewhat richer dome regions in both stages.

The E 3 target levels for CO and HC emissions at approach power are a

function of CO and HC emissions at idle conditions (Figure 122). This depen-

dency is a result of these two operating modes being the key contributors to

CO and HC emissions in the EPA landing-takeoff cycle. This figure suggests

that the HC emissions for the Mod V configuration will meet the E 3 target

with either pilot only or pilot and main stages lit. The CO emissions, on

the other hand, fall short of meeting the target in either mode. The figure

also indicates that the Mod II configuration CO and HC emissions levels, even

though higher than those of the Mod V, will meet the target level due to the

lower idle emissions.

NO x emissions measurements at simulated sea level takeoff conditions

were obtained only for the baseline, Mods I, II, and V configurations. NO x

emissions data was collected at idle and approach conditions for all config-

urations. From this low-power data, NO x emission levels at sea level take-

off conditions were estimated with the use of a severity parameter linear cor-

relation which takes into account the influence of pressure, temperature, humid-

ity, fuel-air ratio, and fuel flow split between the pilot and main stages.

The linear nature of this correlation allows for the extrapolation of NO x

results obtained at low-power operating conditions to high-power operating
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conditions. The results of the measured NO x emissions correlation to this

parameter are shown in Figure 123. The reference conditions represent the

values at the actual FPS cycle sea level takeoff operating condition.

The baseline configuration produced the lowest NO x emissions at a level

of 19.2 g/kg (19.2 Ibm/1000 Ib) of fuel with a 40/60 pilot stage to main stage

fuel flow split. The E 3 tarBet for NO x emissions is 17.5 g/kg (17.5 Ibm/

I000 Ib) of fuel. However, test experience indicated that the full-annular

combustor generally produced lower NO x emissions than the sector combustor

with similar features.

The higher NO x emissions obtained in all the subsequent configurations

were due primarily to the higher flame temperatures resulting from higher com-

bustion efficiencies associated with a more uniform dome stoichiometry. Fur-

thermore, both pilot and main stage domes were enrichened following the base-

line configurations for ignition and idle emissions improvement purposes.

6.2.4.12 Altitude Relight Test Results

The altitude relight ignition performance of the E 3 sector combustor

was investigated only with the Mod VI configuration using the CF6-50 engine

windmilling map. Successful relight was obtained only at test points sim-

ulating conditions in the lower left portion of the windmilling envelope as

illustrated in Figure 124. This was thought to be caused by a low pressure

drop across the fuel nozzle tip due to the use of relatively large-flow fuel

nozzles. Low fuel nozzle pressure drop usually results in poor fuel atomi-

zation. However, a repeat test with significantly smaller fuel nozzles seemed

to have little effect on the number of successful relights, even though the

light-off fuel-air ratios for these successful relights dropped drastically.

To verify that relight was not inhibited by a lack of fuel flow due to the

small fuel nozzles, an intermediate set of nozzles was installed and the test

repeated. Again, no additional points were added to the list of successful

lights, and the light-off fuel-air ratios were between those of the previous

runs.
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Additional altitude relight testing, conducted with the pilot stage

dilution blocked and prototype fuel nozzles, indicated that no further per-

formance improvements were attainable with the current configurations. The

detailed results of all altitude ignition testing are summarized in Tables

XXVI through XXIX.

6.2.4.13 Concluding Remarks

I. Ignition Results

The sector combustor ignition performance was improved most effectively

through the use of the air shrouded development-type fuel nozzles. These

nozzles are known to have somewhat narrower spray angles and more effective

fuel atomization than the prototype fuel nozzles. As expected, a fuel

enriched dome region also enhanced the ignition performance. All the test

results indicated that in order for the main stage crossfire at subidle

conditions to be reasonably attainable, the main stage swirl cup airflow had

to be reduced to a level near that of the pilot stage swirl cup airflow. How-

ever, the latest E 3 start cycle eliminated the requirement of starting the

engine on both pilot and main stages. Consequently, the pilot stage ignition

performance is expected to meet the revised E 3 start schedule with consid-

erable margin. No difficulty is anticipated with main stage crossfiring at

conditions above idle.

2. Performance Results

Combustion efficiency and exit temperature profile measurements were

only obtained for the baseline configuration of the E 3 sector combustor.

However, a basic conclusion can be made and considered applicable for all

configurations tested. Due to the approximately equal airflow levels in the

pilot and main stages, a fuel flow split for near 50/50 is required to obtain

a uniform exit temperature profile.

The sector combustor pressure drop agrees very well with the design tar-

get of 5%.
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Table XXVI. Altitude Ignition Testing Summary.

11.8 kg/hr (26.0 iblhr) Developaent-Type Fuel Nozzles

Wc
kg/s P3 T3

(lb/s) arm K(" F)

0.19 0.544 304

(0.42) (87)

0.07 0.476 293

(0.15) (67)
0.07 0.408 295

(0.15) (71)

0.07 0.340 296
(0.15) (73)

0.05 0.272 296

(0.11) (73)
0.06 0.238 297

(0.13) (75)
0.14 0.272 297

(0.31) (75)
0.22 0.272 298

(0.49) (76)
0.29 0.272 306

(0.64) (91)

0.36 0.361 306

(0.79) (91)
0.36 0.544 306

(0.79) (91)
0.36 0.408 306

(0.79) (91)

0.36 0.544 306

(0.79) (91)

0.14 0.340 306

(o.317 (91)
0.22 0.408 306

(0.48) (91)

0.33 0.476 306

(0.73) (91)

Vref W c

=/s (_)2.r3
(ft/s)

6.4 37.1

(21.0)

2.6 6.4

(8.5)

3.0 8.7

(9.8)

3.7 12.6
(12.t)

3.0 8.6

(9.8)
4.8 21.4

(]5.7)

9.3 78.7

(30.5)

14.4 168.3

(47.2)
19.1 325.6

(62.7)

18, l 292.4
(59.4)

12.0 128.0

(39.4)

16.0 228.1

(52.5)
12,1 131.3

(39.7)

10.6 52.5

(34.8)

13.4 83.6

(44.0)
12.5 138.6

(41.0)

APfuel

at L/O
APIP arm

0.0285 0.796

0.010 0.395

O.Oll 0.592

0.0135 0.551

0.0110 0.673

0.0191 ---

0.0559 ---

0.126 ---

0.213 ---

0.192 ---

0.087 1.05

0.151 ---

0.089 1.53

0.039 ---

0.059 1.01

0.094 ---

PT PT AP

Vref Vref P

25.8 0.752

53.6 0.546

40.1 0.442

27.9 0.377

26.9 0.297

15.0 0.288

8.9 0.498

5.8 0.724

4.5 0.951

6,1 1.176

14.1 1.231

8.0 1.205

13.9 1.244

10.0 0.392

9.5 0.550

11.9 1.11

f/a
I Cup
Lit

0.0292

0.0556

0.0655

0.0760

0.0370

0.0291

f/e
All *

Cups 1 Cup
Lit Lit

0.0342

0.0570

O. 068

0. 084

0. 109

No Light

No Light

No Light

No Light

0.0180 ---

No Light

0.0210 ---

--- 3.1

0.0355 2.3

No Light

I I

$

All

Cups
Lit

2.8

4.6

5.5

6.8

8.8

1.5

1.7

2.9

Table XXVII. Altitude Ignition Testing Summary.

2.3 kg/hr (5.1 lb/hr) Development-Type Fuel No=ties

WC
kg/s P3 T3

(lb/s) arm K(" F)!

0.19 0.544 296

(0.42) (73)
0.07 0.476 281

(0.15) (46)

0.07 0.408 288

(0.15) (58)
0.07 0.340 294

(0.15) (69)

0.05 0.272 294

(0.II) (69

0.07 0.245 294

(0.15) (69)
0.14 0.286 285

(0.31) (53)

0.22 0.272 277

(0.48) (39)
0.38 0.408 276

(0.84) (37)

Vref W c

m/s ('_)2T3
(ft/s)

6.3 36.1

(20.7)

2.5 6.1

(8.2)

2.9 8.5

(9.5)
3.6 12.5

(11.8)
3.1 9.9

(10.2)

4.8 24.0

(15.7)
8.5 68.3

(27.9)
13.0 181.2

(42.6)

15.1 239.4

(49.5)

APfuel
at LIo

aP/P arm

0.0290 13.40

0.0093 3.27

0.0107 3.33

0.0131 4.08

0.0111 3.67

0.0190 3.20

0.0500 _-

0.1120 _-

0.1470 _-

PT PT aP

Vref Vref P

25.6 0.742

53.5 0.498

40.5 0.433

27.8 0.364

25.8 0.286

15.0 0.285

9.6 0.480

5.8 0.650

7.5 1.103

fla *

f/e All * All
1 Cup Cups 1 Cup Cups
Lit Lit Lit Lit

0.0187 0.0206 1.5 1.7

0.0333 0.0333 2.7 2.7

0.0342 0.0342 2.8 2.8

0.0370 0.0370 3.0 3.0

0.0516 0.0516 4.2 4.2

0.0439 --- 3.5 ---

No Light

NO Light

INoL'g"i I
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Table XXVIII. Altitude Ignition Testing Summary.

2.3 kg/hr (5.1 ib/hr) and Development-Type Fuel Nozzles

(Pilot Stage Primary Dilution Closed Off)

kg/s [ P3 T3
(lb/s) latm K(" F)

0.20 IO.574 289

(0.44) t (60)

0.07 f 0.476 289

(0.15) I (60)
0.07 10.408 291

(O.15) 1 (64)
0.07 t0.340 294

(0.15) I (69)
0.04 10.272 279

(0.09) I (42)

0.07 10.245 278

(0.15) I (40)

0.15 10.265 278

(0.33) I (40)

0.21 10.279 277

(0.46) I (39)

0.28 [ 0.272 273

(0.62) I (31)
o.14 10.347 284

(0.31) ] (51)

u.21 10.408 284

(o.46) l (51)

0.32 I 0.476 277

(0,70)[ (39)
0.15 10.340 277

(0.33) [ (39)

0.21 I 0.524 278

(0.46) I (40)

0.28 i 0.766 273

(0.62) I (31)

Vref W c

m/s (-_)2T3
(ft/s)

6.3 35.1

(20.7)

2.5 6.3

(8.2)
2.9 8.6

(9.5)

3.5 12.5

(11.5)

2.5 6,0

(8.2)
4.5 22.7

(14.8)

9.5 89.1

(31.2)
12.4 156.9

(40.7)
16.6 289.3

(54.5)

6.8 46.2

(22.3)

8.4 75.2

(27.6)
10.9 125.2

(35.8)
7.4 53.9

(24.3)

6.6 44.6

(21.7)
5.9 36.5

(19.4)

APfuel

at L/O
AP/P arm

0.032 6.19

0.0095 3.61

0.0110 3.27

0.0136 3.67

0.0098 4.83

0.0202 4.42

0.0723 ---

0.1206 ---

0.2132 ---

0.0388 5.85

0.0581 24.45

0.1778 22.65

0.0460 ---

0.0378 ---

0.0314 ---

PT PT bP

Vref Vref P

26.3 0.842

55.0 0.523

40.9 0.450

28.6 0.389

30.4 0.298

15.1 0.305

7.8 0.564

6.2 0.748

4.5 0.594

14.5 0.563

13.8 0.802

12.1 2.151

12.7 0.584

22.1 0.835

35.4 1.111

f/e

1 Cup
Lit

0,0122

0,0261

0.0258

0.0272

0.0491

0.0303

0.0167

0.0228

0.0145

0.0246

0.0178

0.0145

f/e I
All 0

Cups I 1 Cup
Lit i Lit

l
0.0122 0.98

0.0261 2.1

0.0258 2.1

0.0272 2.2

0.0491 4.0

0.0302 2.4

No Light

No Light

No Light

0.0167 1.3

0.0228 1.8

0.0188 1.2

0.0281 2.0

0.0194 i 1.4

0.0171 1.2

¢

All

Cups
Lit

0.98

2.1

2.1

2.2

4.0

2.4

1.3

1.8

1.5

2.3

1.6

1.4

Wc
kg/s

(lb/s)

0.19

(0.42)

0.07

(0.15)

0.07
(o.15)

0.07

(o.15)

0.04
(O.O9)

0.07

(0.15)

0.16

(0.35)

0.14

(o.31)

0.21

(0.46)

Table XXIX. Altitude Ignition Testing Summary.

11.3 hg/hr (24.9 lb/hr) Prototype Fuel Nozzles

P3 T3
arm K(* F)

0.539 293

(67)

0.471 294

(69)

0.404 293

(67)
0.337 293

(67)

0.271 294

(69)
0.244 294

(69)
0.265 294

(69)
0.344 295

(71)
0.408 295

(71)

Vref W c

m/s (_'_)2T3
(ft/s)

6.2 36.4

(20.3)

2.6 6.5

(8.5)

2.9 8.8

(9.5)

3.5 12.6

(11.5)

2.7 6.4

(8.8)

4.8 26.2

(15.7)
10.3 107.2

(33.8)

7.1 48.9

(23.3)
9.0 78.2

(29.5)

APfuel
at L/O

AP/P arm

0.0326 1.430

0.0097 0.612

0.0111 0.748

0.0137 0.748

O.OlOl 1.020

0.0216 0.748

0.0788 ---

0.0410 1.293

0.0621 2.177

PT PT aP

Vref Vref P

25.5 0.831

53.3 0.517

40.8 0.453

28.2 0.386

29.5 0.298

14.9 0.322

7.6 0.599

14.3 0.586

13.4 0.832

f/e

1 Cup
Lit

0.0377

0.0683

0.0761

0.0777

0.1480

0.0777

f/e #

All ¢ All

Cups 1 Cup Cups
Lit Lit Lit

0.0377 3.0 3.0

0.0683 5.5 5,5

0.0761 6.1 6.1

0.0777 6.3 6.3

0.1480 12.O 12.O

0.0777 6.3 6.3

No Light

0.0490 0.0490 4.0 4.0

0.0429 0.0429 3.5 3.5
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3. Emissions Results

CO idle emissions met the E 3 target level of 20.7 g/kg (20.7 Ibm/lO00 Ib)

of fuel for only two of the configurations tested. One of these two config-

urations featured the prototype fuel nozzles which were found to be detri-

mental for the sector combustor ignition performance. The HC emissions target

level of 2.8 g/kg (2.8 ibm/!O00 Ib) of fuel was substantially exceeded in the

other configuration. The airflow distribution of the Mod V configuration

resulted in the best overall idle emissions performance with the HC emissions

target met and the CO emissions target exceeded by 14%.

NO x emissions at simulated sea level takeoff conditions are estimated

to have exceeded the target level of 17.5 g/kg (17.5 ibm/lO00 ib) of fuel for

all configurations tested for this emissions category. The NO x emissions tar-

get was considered to be the most challenging of all the pollutant emissions

targets. However, the E 3 full-annular combustor test experiences have

demonstrated that generally higher NO x emissions were produced in the sector

combustor than the full-annular combustor for similar configurations.

4. Altitude Relight Results

The sector combustor exhibited a limited success in altitude relight per-

formance. Ignition was not attainable at speeds higher than Mach = 0.6 and

altitudes higher than 9 km (29,500 ft). Further investigation was required

for any effort to improve the altitude relight performance, but such effort

was not planned in the E 3 Sector Development Program scope.

6.3 FUEL NOZZLE CALIBRATION TESTING

Detailed flow testing was conducted to calibrate and measure the fuel

spray angle for each of the 48 completed E 3 engine fuel nozzle assemblies

received. This testing was done using the Meriman flow calibration test stand

located in the GE-Evendale Building 301 Fuel Nozzle Laboratory. Calibration

and spray angle data obtained were checked against the design intent and the

calibration data generated by the manufacturer prior to shipment.

The procedure used was to mount a nozzle assembly vertically above a

catch basin. Fuel supply lines were connected to the inlet fittings of the

pilot and main systems. The supplied calibration fluid closely simulates the
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properties of Jet A-type aviation fuel. Nozzle tip shroud air was not used
for the purposes of this calibration testing. Various fuel pressures repre-

senting points along the nozzle design curves were set, and fuel flow rates

and spray angles were recorded at each pressure. Fuel spray angles were

obtained by using an adjustable protractor and the humaneye. Although this

was a crude technique, it was considered reasonable in order to provide the

desired accuracy.

The results of this in-house calibration testing revealed two problem

areas which could potentially impact the overall operating performance of the

combustor.

The first problem identified involved low fuel flow levels measured in

the secondary system in both the pilot and main stage nozzle tips. At fuel

pressures representing sea level takeoff operation, the pilot stage tips - on

the average - flowed ~7% below the design intent of 80 kg/hr (176 Ib/hr),

±4%. At the same operating conditions, the main stage tips - again, on the

average - flowed ~8% below the design intent of 159 kg/hr (350 ib/hr), ±4%.

The measured tip-to-tip variation in both the pilot and main systems was ~10%

from the average measured flow level. Therefore, some of the nozzle tips were

flowing as much as 18% below the design nominal. These results were verified

by calibration data supplied by the manufacturer.

This problem was discussed with engineering representatives from the man-

ufacturer. From these discussions it was learned that in sizing the secon-

dary fuel metering annulus within the nozzle tip, the required secondary fuel

flow level was set as a total (primary plus secondary) nozzle tip fuel flow

level. Thus, the secondary systems were sized for a lower flow than speci-

fied. To achieve the correct engine fuel flow levels at the high-power oper-

ating conditions (where the secondary fuel systems are in use) will require

fuel pressure increases of about 15% over the design. This is well within the

engine fuel supply capacity and does not pose a problem for engine operation.

The measured average fuel flow calibration data are presented with the design

operating curves in Figure 125.

The other problem identified through this calibration testing involved

the fuel spray cone angle of the primary fuel system for the pilot and main
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stage nozzle tips. The design specification requires this angle to be between

45 ° and 55 ° at a fuel pressure drop of 0.255 MPa (37 psi). Angles from 20 ° to

over 60 ° were measured with considerable tip-to-tip variation. There was

considerable concern over the potential negative impact on the combustor low-

power performance where only the primary fuel systems would be in use.

It appears that the problem arose because during the manufacturing phase,

the spray angle of the primary systems was set without the secondary system

or air shroud assembled onto the tip. Apparently, the presence of these fea-

tures caused a destabilizing effect on the primary spray angle. It was sug-

gested that the fuel nozzle tips be checked for spray angle with shroud air

present. The low pressure region that would form around the tip as a result

of the shroud air would cause the primary fuel spray to open up. The physical

boundary formed by the tip bow tail would limit this angle from providing a

stabilizing effect.

To test this idea, a special box was fabricated into which the engine fuel

nozzle assemblies were individually mounted. The pilot and main stage nozzle

tips protruded through a wall of the box. Pressurized air was supplied to the

box to energize the shroud air. Fuel was supplied to the nozzle tips. The

box with nozzle assembly was set up on the fuel spray visual test stand.

Observations were made of the nozzle tip operation.

The results from this testing confirmed expectations. The primary fuel

spray angle opened up to the bow tail angle with just the slightest amount of

shroud air. The spray angle remained opened and stable at shroud airflow

levels representing combustor dome pressure drops in excess of 10%. Measured

angles with the shroud air were all within the design specifications. It was

also observed that the atomization quality of the primary fuel spray greatly

improved with the presence of shroud air. There was no observed impact on the

secondary fuel spray angle resulting from the introduction of shroud air. How-

ever, significant improvement in the fuel atomization quality was evident.

Based on the results of this testing, fears of potential combustor per-

formance problems directly linked to the use of these nozzles were alleviated.

All 48 nozzle assemblies were considered acceptable for use in combustor com-

ponent testing and actual engine system testing.
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7.0 FULL-ANNULAR COMBUSTOR COMPONENT DEVELOPMENT TESTING

Full-annular combustor component development testing of the E 3 combustor

involved two major combustor designs: lean main stage designs and rich main

stage designs. The primary development effort involved the lean main stage

designs, directed toward evolving a combustor design capable of satisfying all

of the design objectives established in the E 3 combustor development program.

In this effort, the Baseline and Mods I, VI, and VII, plus the engine combus-

tor configurations, were evaluated for ground start ignition, exit temperature

performance, and emissions. The secondary development effort involved the

rich main stage designs directed towards evolving a combustor design capable

of staged combustion during ground start operation. The Mods II through V

combustor configuration were evaluated for ground start ignition and exit

temperature performance as part of this effort.

In supDort of each design philosophy, promising design concepts which

evolved from the various subcomponent testing efforts conducted as part of

the E 3 combustor development program were considered for incorporation into

the full-annular combustor designs. Other promising design concepts consid-

ered were identified through analysis of test results obtained from previously

tested full-annular configurations. Many of these design concepts were incor-

porated into the full-annular combustor for detailed evaluation. This proce-

dure resulted in a very successful full-annular test program. The engine

combustor design which evolved from this develoment effort satisfied nearly

all of the required design objectives.

7.1 TEST HARDWARE DESCRIPTION

7.1.1 Double-Annular Development Test Combustor

The E3 double-annular dome development test combustor was designed for

flexibility and low cost while providing an accurate simulation of the engine

combustor flowpath, key dimensions, and design features. An illustration of

the E 3 development combustor and key features are shown in Figure 126. The

development combustor consisted of a double-annular dome assembly separated by

a centerbody. Each dome has 30 equally spaced swirl-cup assemblies identical
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in design to those of the engine combustor. The liners contain 30 equally

spaced primary air holes and 60 equally spaced secondary trim air dilution

holes. The primary holes are an eyelet-type design with a coannular clear-

ance gap which provides a close simulation of the engine double-wall liner

air hole aerodynamics. The liners are attached to the dome assembly by bolts

which permitted assembling the liners with the primary air holes directly

in-line with the swirl cups or between the swirl cups. The centerbody struc-

ture, which is also bolted to the dome assembly, provides a sheltered region

between the pilot stage outer dome annulus and the main stage inner dome

annulus. The centerbody structure contains two crossfire tubes to permit

propagation of hot gases from one burning dome annulus into the other for the

purpose of ignition. There are also 30 equally spaced primary air holes which

penetrate the outer dome annulus and 30 equally spaced primary air holes which

penetrate the inner dome annulus. The centerbody can also be positioned such

that the primary holes are directly in-line with the swirl cups or between the

swirl cups.

The development combustor liners are a conventional machined ring film

cooled design as compared to the film impingement shingle liner design of the

engine combustor. The inner surface of the development combustor liners match

the engine combustor flowpath. However, because there is no impingement cool-

ing liner, the outer surfaces of the liners do not match the engine combustor

flowpath. In order to simulate the same inner and outer flow passage veloci-

ties and pressures, flowpath inserts were installed into the test rig combus-

tor housing section, also shown in Figure 126. Plunged-type holes are used

for the secondary trim dilution for both the inner and outer liners. Eight

major configurations of the E 3 development combustor were built and evalu-

ated in this testing effort.

The development combustor fuel injector assembly, shown in Figure 127,

consists of a single body with two fuel passages and two simplex-type fuel

nozzle tips to supply fuel to the outer dome annulus and inner dome annulus.

The envelope of the development nozzle body duplicates that of the engine

nozzle but is much more simple relative to internal hydraulics. Both nozzles

of each injector can be removed and replaced with simplex-type nozzle tips of

different flow rates and spray characteristics. A schematic of a typical
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Typical Fuel Nozzle Tip

0.48 cm (0.188 in.)
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3
Figure 127. E Test Rig Fuel Nozzle Assembly.
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nozzle tip is also shown in the figure. A large assortment of these tips was

purchased for use in the various kinds of testing to be performed.

7.1.2 Double-Annular Engine Combustor

The E 3 engine combustor, previously shown in Figure i, features the

same internal aerodynamic flowpath as the development combustor. The hardware

featured in the domes and centerbody assembly is the same design as that used

in the development combustor. However, the liners are a double wall film plus

impingement cooled, segment shingle design.

The E 3 engine fuel nozzle assemblies, previously shown in Figure 58,

feature two pressure atomizing nozzle tips mounted onto a single stem. Each

of the two nozzle tips is a duplex type featuring a low flow primary system

for good fuel spray atomization at low power operating conditions, and a high

flow secondary system to achieve the required fuel flow levels at high power

operating conditions. Fuel is independently supplied to the pilot and main

stage nozzle tips by two scheduling valves contained in the inlet of each

nozzle assembly. Additional valves contained in the nozzle assembly valve

housing control the fuel scheduling to the primary and secondary systems of

the duplex nozzle tips. The fuel nozzle stem is encased in a heat shield to

insulate the fuel from the hot compressor discharge air. Additional insula-

tion is provided by clearance gaps surrounding each fuel passage inside the

nozzle body.

7.1.3 Full-Annular Test Rig Description

The E 3 double-annular dome development combustor evaluations were con-

ducted in a full-annular, high pressure test rig specifically designed to

house the E 3 combustor. This full-annular combustor test rig exactly dupli-

cates the engine combustor aerodynamic flowpath and envelope dimensions. The

test rig consists of four major subassemblies, which are the inlet duct, dif-

fuser flowpath transition section, combustor housing, and instrumentation sec-

tion for gas sample data acquisition or atmospheric performance data acquisi-

tion. A detailed illustration of the test rig is presented in Figure 128.

The inlet duct assembly is attached to the test facility air supply sys-

tem (not shown) at a specially designed pipe flange of 95.4-cm (37.5-in.)
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diameter. The inlet duct assembly, in addition to providing the interface

with the test facility air supply, also has provisions for transferring com-

bustor bleed air and test rig cooling air into and out of the test rig. These

ancillary airflow systems are connected to test facility control and measure-

ment systems.

The outer shell of the inlet duct attaches to the transition section,

which converges to form the outer wall of the prediffuser inlet. Six radial

struts support the bulletnose centerbody which transitions to the inner flow-

path contour of the prediffuser inlet to duplicate the annular passage that

exists at the compressor discharge plane. The centerbody provides an internal

flowpath for transmitting the cooling and bleed airflows, as well as instru-

mentation leadouts through passages in the radial struts.

The annular passage which simulates the compressor discharge exit con-

nects to the prediffuser assembly located within the combustor housing. This

annular passage splits into two separate annular passages with inner and outer

walls conforming to the exact contours of the engine split prediffuser. The

split prediffuser passages are supported by streamlined struts similar to

those in the engine. Airflow can be extracted at the trailing edge of the

prediffuser, in the cavity formed by the splitter vane walls, through ten

2.06-cm (0.8-in.) diameter bleed ports equally spaced around the circumfer-

ence. The airflow extracted through these bleed ports is routed through pip-

ing in the support struts spanning the outer prediffuser passage to a common

manifold, then radially out of the rig through hoses to a bleed manifold which

is connected to a standard ASME orifice run to meter the flow. A detailed

schematic of this bleed system is shown in Figure 129. This prediffuser bleed

system was designed to have the capability of varying the amount of bleed flow

extracted from the combustor airflow to evaluate the effects of this engine

flow parameter.

The combustor housing section of the test rig aerodynamically simulates

the flowpath and envelope of the engine. The outer pressure vessel simulates

the outer flowpath while an inner support which connects to the prediffuser

provides the inner flowpath contour.
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The outer pressure vessel housing is equipped with ports and bosses to

accommodate 30 equally spaced dual-nozzle fuel injector assemblies, two ignit-

ers, and allow for borescope inspection and instrumentation leadout. Fuel

is supplied to the fuel injectors through tubes which provide a connection

between the dual manifold fuel supply and the pilot or main stage fuel passage

in the injector body.

At the aft end of the outer flowpath, airflow can be extracted through

thirty 3.0-cm (1.18-in.) diameter bleed ports, equally spaced around the

circumference to simulate turbine nozzle cooling flow from the combustor outer

flowpath. The flow extracted from each bleed port is routed into a collector

manifold then out of the test rig. At the aft end of the inner flowpath,

airflow can be extracted through nine 3.5-cm (l.18-in.) diameter bleed ports,

equally spaced around the circumference, to simulated turbine nozzle cooling

flow from the combustor inner flowpath. The flow extracted from each of

these bleed ports is routed into a plenum cavity at the center of the test

rig, then out through an annular pipe along the centerline of the centerbody

assembly. Both the inner and outer passage bleed systems have standard ASME

orifice runs to meter and measure the bleed flow. These bleed ports together

with the prediffuser bleed ports provide the capability to accurately simulate

and evaluate the effect of engine turbine cooling flows expected during engine

operat ion.

The combustor mounting system used in the test rig is identical to that

designed for the engine. The combustor is supported at the front end by

engine mounting pins and is supported at the aft end by floating seals similar

to those on the engine design.

The aft end of the combustor housing is connected to an adapter flange

which provides cooling air to the aft outer combustor flowpath. This adapter

has a single manifold cavity which feeds cooling air through twenty-two 2.5-cm

(l.0-in.) radial holes to the aft tail piece. In addition, the mounting pro-

visions for the instrument spools are located in this adapter.

The instrumentation spool features a rotating internal shaft supported

by six radial struts: three forward and three aft. A cross section of the

rotating spool piece is shown in Figure 130. The end of the rotating shaft,
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which is supported by two bearings, has ten mounting pads. The gas sample

rakes and/or thermocouple rakes are mounted to these pads in locations and

quantities as desired during test. Cooling of the shaft assembly and struts

is accomplished by circulating wate_ through the struts and along the shaft.

A portion of the cooling water is directed to the rake mounting pads where it

supplies an auxiliary water manifold and to the gas sample rakes for rake body

cooling. The rake cooling water is discharged from the rake bodies into the

duct. Additional structural cooling is accomplished by water discharged from

spraybars and ring manifolds mounted near the duct walls.

Rotation of the center shaft is accomplished by a drive motor located

outside the instrument spool duct wall. This motor drives a radial shaft,

supported in a strut, which is connected to a helical gear set by a spherical

gear coupling. The spherical gear coupling permits rotation even with some

shaft misalignment. The portion of the helical gear, which is aligned with

the rake mounting shaft, contains a lug. This lug engages a slot in the shaft

and can rotate the shaft a total of about 36 ° clockwise and counterclockwise

for a total of nearly 72 ° rotation. The input coupling has a mechanical stop

to prevent excessive travel. The drive shaft is equipped with shear pins to

prevent damage to the gear mechanism in the event of hangup or overtravel.

The Atmospheric Combustion Test Stand (ACTS) system is used to obtain

detailed temperature measurements at the combustor exit. The system adapts

to the aft end of the combustor test rig housing as shown in Figure 131.

Thermocouple rakes and/or pressure rakes are attached to the traverse ring

and are guided by the roller system and track. The traverse ring is motor

driven and will rotate 90 ° clockwise or counterclockwise in increments as

small as 1.5 ° . The thermocouple rakes are equipped with seven chromel-alumel

(C/A) elements. The thermocouple elements are led to a chromel alumel ther-

mocouple system (CATS) block which transmits the electronic signals to the

data acquisition system. The exit temperature data, along with the fixed

test rig and combustor instrumentation, are automatically processed by the

data acquisition system and are presented in a finished format of prescribed

combustor performance parameters and operating conditions.
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7.2 TEST METHODS

7.2.1 Atmospheric Tests

Ground start ignition, crossfire, and exit temperature performance char-

acteristics of the E 3 development combustor were evaluated at atmospheric

inlet conditions. In this testing configuration the test rig was discharged

"open end" into the surrounding test cell ambient envirormlent. This permitted

useful visual observations of the combustor in operation. In these atmos-

pheric tests, the combustor inlet temperatures duplicated the level of the

desired operating cycle test point. However, the combustor airflows were

scaled down to levels which simulated the combustor velocities while operating

at atmospheric inlet pressure. This technique provides an inexpensive testing

approach by which to develop satisfactory ground start ignition and exit tem-

perature performance characteristics while providing accurately simulated com-

bustor operating conditions.

Ground start ignition testing was conducted using the standard GE23

ignition system. This system consists of igniter plug (P/N 4013204-I12PO1),

exciter unit (P/N 91OM52-PII), and igniter lead (P/N 9787M147). This ignition

system has an energy delivered rating of two Joules with a firing rate of two

sparks per second. The igniter was positioned in outer liner panel 1 ° at 240 °

CW ALF (aft looking forward). The igniter immersion was flush with the inside

surface of the liner panel wall. To further simplify this testing, no bleed

flows were set during the ignition evaluations. Past experience has shown

that the effects of bleed flows on the ground start ignition characteristics

are insignificant. The basic testing procedure used goes as follows:

I. Set the combustor operating conditions corresponding to the selected

steady-state test point.

2. Activate the ignition system.

3. Supply fuel to the pilot stage fuel nozzles. Continue to increase

this fuel flow until the igniter swirl cup has ignited. Deactivate

the ignition system, and record the operating conditions and fuel

flow level.

4. Continue to increase the fuel flow until full pilot stage propaga-

tion is achieved. Record the operating conditions and fuel flow

level.
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5. Reduce the fuel flow rate slowly until one pilot stage swirl cup

extinguishes. Record the operating conditions and fuel flow level.

6. Continue to decrease the fuel flow rate until total lean blowout is

obtained. Record the operating conditions and fuel flow level.

7. Repeat Steps 2 through 4. Then reduce the pilot stage fuel flow to

a level 10% above the level recorded at one cup extinguished.

. Hold the pilot stage fuel flow level steady and supply fuel to the

main stage fuel nozzles. Continue to increase the main stage fuel

flow until the crossfire cup or cups ignite. Record the operating

conditions and fuel flow levels.

9. Continue to increase the main stage fuel flow until full propagation

is achieved. Record the operating conditions and fuel flow levels.

I0. Reduce the main stage fuel flow slowly until total main stage lean

blowout is obtained. Record the operating conditions and fuel flow

levels. Then shut off the main stage fuel flow.

Ii. Reduce the pilot stage fuel flow slowly until total pilot stage lean

blowout is obtained. Record the operating conditions and fuel flow

levels.

12. Shut off all combustor fuel flow, then proceed to set the operating

conditions corresponding to the next selected test point.

Throughout this procedure, visual observations were used to determine igni-

tion, propagation, and lean blowout.

Atmospheric exit temperature performance testing was conducted using the

ACTS system. Four E 3 exit temperature rakes were mounted onto the traverse

ring of the ACTS system, equally spaced around the circumference. These

rakes, shown in Figure 132, contained seven chromel-alumel thermocouple ele-

ments, and were especially designed for use with the E 3 combustor test rig.

Throughout the duration of the E 3 combustor development testing effort, the

temperature rakes underwent modifications intended to improve the quality of

the data and reduce traverse problems. An illustration of these modifica-

tions is presented in Figure 133. During atmospheric performance testing only

the prediffuser bleed flow was simulated. At all primary performance test

points, exit temperature traverse data was obtained every 1.5 ° of the total

90 ° traverse. This provided temperature radial profile measurements at 240
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circumferential positions for a total of 1680 individual temperature measure-

ments. At off design or secondary test points, data was obtained every 3 °

around the circumference in order to save time. All combustor test rig

instrumentation and exit temperature performance data were recorded on the

facility data acquisition system. This information was then automatically

processed through a computer data reduction program to calculate the combustor

operating conditions, the average and peak_adihl, temperature profiles, and

the pattern factor and profile factor using these relations:

T4 (max.) - T4 (a_v__)
Pattern Factor =

T4 (avg) -,T3

T4 immersion avg (max.) - T4 (avg)
Profile Factor =

T4 (avg) - T3

7.2.2 Pressure Tests

Emissions characteristics of the E 3 development combustors were evalu-

ated at elevated inlet pressure. Several combustor configurations were also

evaluated for ground start ignition and crossfire characteristics at elevated

pressure as part of an emissions test. For this pressure testing, the test

rig was assembled into a closed configuration. Since visual observations were

not possible, monitoring the combustor operation was accomplished by using

the available test rig and combustor pressure and temperature instrumentation.

Air was supplied to the test rig from the facility high pressure, high

flow capacity system. With this system, combustor operating conditions in the

test rig exactly duplicating the E 3 FPS cycle conditions could be achieved up

to 30% of sea level takeoff power. Above this power level, combustor airflow

and inlet pressure were limited by the maximum capacity of the facility. At

these high power operating points, test Conditions were simulated. The com-

bustor inlet temperature was set to the exact engine cycle level. The maximum

available test section total pressure was approximately 1.655 MPa (240 psia).

This compares to the 3.025 MPa (439 psia) level associated with the FPS sea

level takeoff operating condition. Combustor test rig airflows were scaled

down accordingly, such that combustor velocities simulated the velocities at

true engine cycle operating conditions.
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All CO, HC, and NO x emissions levels measured at the simulated high power

operating conditions were adjusted to reflect levels that would be obtained if

measured under true engine cycle operating conditions. These adjustments were

made using the relations presented in Appendix D.

Gas samples were extracted from the combustor discharge stream using the

E 3 gas sample rakes (P/N 4013100-986) shown in Figure 134. Five rakes were

used, each with four sampling elements. For the purpose of ground start igni-

tion testing, two chromel-a]umel-type thermocouples were strapped onto the

outermost and innermost sampling elements of each of the five gas sampling

rakes. This arrangement is illustrated in Figure 135. These thermocouples

were connected to a "Metroscope" visual display system within the facility

control room and were used in determining ignition, crossfire, and lean

extinction in the pilot stage and main stage of the combustor. A procedure

similar to that used in the atmospheric ground start ignition testing was used

to obtain the data.

For gas sampling purposes, all four elements of each gas rake were indi-

vidually connected to the valving in the gas sampling equipment. This approach

provided the flexibility to close off individual rake elements from the rake

sample if problems would arise in any of the four elements. The five gas sam-

piing rakes were equally spaced around the test rig instrumentation spool.

Unheated water was used to cool the rakes during testing. The decision to

use unheated water as the cooling medium was arrived at from results obtained

during the emissions evaluation of the Baseline development combustor. These

results, shown in Figure 136, showed that the use of unheated cooling water

had only a very minor impact on idle emissions. This result plus the simplic-

ity and lower costs of using unheated cooling water were the outstanding fac-

tors in selecting this approach.

During gas sampling, the rakes were traversed through 66 ° at 6 ° incre-

ments enabling gas samples to be obtained in-line with and between all 30

swirl cups. For ignition and blowout evaluation, the gas sampling rakes were

positioned such that one rake was located at 240 ° CW ALF, placing that rake

with its two thermocouple elements directly downstream of the pilot stage

igniter cup and one of the two pilot stage-to-main stage crossfire tubes.
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Gas samples were analyzed using the CAROL II (C__ontaminates Are R__ead On

Line) gas analysis system located at the test facility. Instruments featured

in this system include:

• Beckman Model 402 total hydrocarbon analyzer (flame ionization

detector)

• Beckman Model 315-B carbon monoxide and carbon dioxide analyzer

(NIDR)

• Beckman Model 915-H NO x analyzer (heater chemiluminescence with

converter)

Sample flow was passed through a refrigerated trap to remove excess water from

the sample before entering the gas analysis instruments. Prior to testing,

the CAROL II system was calibrated using a set of calibration gases. These

gases and their GE constituent analysis are listed in Table XXX. During test-

ing, calibration spot checks of the instruments and any necessary adjustments

were made to assure that this equipment was in good working order at all times.

Inlet air humidity was measured using an EG&G Model 440 dewpoint meter.

Table XXX. CAROL Calibration Gases.

S__an 1 Span 2 S__an 3 Span 4

Bottle S/N -

CO 261131 2960095 6742 49244

(ppm) (227) (468) (1085) (2350)

COa 261131 2960095 6742 49244

(%) (1.27) (2.54) (4.9A) (8.03)

HC 1317746 49301 127885 49110

(ppm) (74.3) (143) (569) (1328)

Nox 12553 12548 10766 3976

(ppm) (29.1) (69.8) (234) (543)

Smoke samples were taken only at designated key combustor operating

points in the test schedule. Smoke samples were extracted from the exhaust
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gases using two of the five gas sampling rakes valved in a manner which pro-

vided a single sample. At those test points where smoke samples were taken,

the rakes were initially positioned in-line with the swirl cups, then rotated

6 ° to between swirl cups. At each of these two positions, several smoke sam-

pies, each 0.2 ft 3 (0.0057 m 3) in volume, were obtained using a standard

GE smoke console located in the cell control room.

All emissions and instrumentation data acquisition was automatically

handled by the Cell A3 medium speed digital data acquisition system. From

this system, the data was processed through a computer data reduction program

which performed calculations to compute the various emissions indices, combus-

tor operating parameters, and convert digital signals from all pressure and

temperature instrumentation to engineering units. All smoke samples were

obtained on Wattman No. 4 filter paper. Following completion of testing, the

smoke samples obtained were analyzed on a Densichron to determine the optical

density used to compute the SAE smoke number.

7.3 BASELINE DEVELOPMENT COMBUSTOR TEST RESULTS

7.3.1 Atmospheric Ground Start Ignition Test

The first test of the E 3 double-annular dome development combustor and

test rig was conducted on 7 February 1980 in the General Electric Aero Compo-

nent Lab Cell A3W test facility. The purpose of this test was to evaluate

the Baseline development combustor configuration for ground start ignition,

pilot to main stage crossfire, and the pilot and main stage lean blowout

characteristics at atmospheric inlet pressure along the E 3 (9/79) ground

start operating line. Test points and corresponding operating conditions are

shown in Table XXXI.

The Baseline combustor configuration featured most of the mechanical and

aerothermo characteristics evolved during the design phase of the combustor

development program. The only significant difference from the proposed

design was in the pilot dome splash-plate cooling flow level. The combustor

was designed to have approximately 4.3% of the total combustor flow for the

pilot dome splash-plate cooling. However, the hardware was fabricated to

have approximately 2.5 times the design flow level to provide the ability to
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Table XXXI. Development Combustor Baseline Atmospheric

Ignition Test Point Schedule.

Start

Time, XNRH, T3, K
Point sec % (° F)

1 I0 21.0 289, (60)

2 15 28.0 289, (60)

3 18 32.0 314, (105)

4 30 46.0 344, (160)

5 40 58.0 383, (230)

6 50 70.0 428, (310)

7 55 77.0 503, (445)

P3

atm

1 O0

1 O0

1.00

1.00

1.00

1.00

1.00

W36"

kg/s

1 25

1 69

1 55

1 65

1.86

1.94

2.33

W36

pps

2.75

3.73

3.42

3.64

4.10

4.28

5.14

*If inlet air temperature cannot be set at the pres___cribed level,

W36/T3

the airflow will be changed to maintain the P3 value.

easily increase the splash-plate cooling flow level if necessary. It was

intended to block off a percentage of this flow to achieve the intended design

levels if baseline testing indicated sufficiently low dome metal temperatures.

The estimated airflow distribution for the baseline development combustor is

available in Appendix E. The fuel nozzle assemblies used featured the E3 test

rig fuel nozzle bodies with simplex nozzle tips rated at 2.3 kg/hr (5 pph) at

i00 psid in the inner dome, and simplex nozzle tips rated at 12.0 kg/hr (26.5

pph) at I00 psid in the outer dome. Both of these nozzle tips had fuel spray

angles of approximately 50 ° .

It had been intended to use the GE23 ignition system to obtain the pilot

stage ignition characteristics. However, problems were encountered at the

onset of testing due to a failure in one of the components of the GE23 igni-

tion system provided. As a result, a hydrogen torch ignition system was sub-

stituted and testing proceeded. Accurate pilot stage ignition data generally

cannot be obtained with a hydrogen torch system due to its high specific energy

242



output. However, pilot stage propagation, pilot-to-main stage crossf[re, and

pilot and main stage lean blowout data were obtained. By the time the last

test point had been set, another GE23 ignition system had been obtained. This

system was installed into the test rig with the intent of obtaining pilot

stage ignition data starting at the last test point and working back toward

the initial test point. Following the completion of ignition at Test Points

7, 6, and 5, another failure in the electrical ignition system occurred and

testing was terminated. The failures involved the igniter lead.

Test results obtained from the atmospheric ground start ignition evalua-

tion of the E 3 development combustor baseline configuration are presented in

Figure 137. A detailed summary of the test data is provided in Appendix E.

Ignition of the pilot stage igniter cup using the hydrogen torch proceeded

without difficulty at each test point evaluated. However, once ignition

occurred, a substantial increase in the pilot stage fuel flow was required to

obtain a full propagation of the fire. As observed from this figure, the

pilot stage ignition characteristics were within the E 3 start cycle require-

ments.

The three test points evaluated with the GE23 ignition system show excel-

lent agreement with the results obtained with the hydrogen torch ignition

system. Past experience has generally shown that as the combustor operating

conditions become more severe for ignition, greater difficulty arises in

achieving ignition with electrical systems than with the hydrogen torch sys-

tems. Therefore, it was expected that pilot stage ignition results obtained

with the GE23 ignition system at the simulated lower speed points would be

somewhat poorer than the results obtained with the hydrogen torch system, but

still within the start cycle requirements. The pilot stage demonstrated an

acceptable lean blowout margin of about 30% along the entire start cycle

operating line.

Ignition of the main stage was attempted at each test point. In all

cases, this was accomplished by hot gases from the burning pilot stage passing

through the two centerbody crossfire tubes located at 60 ° and 240 ° clockwise

aft looking forward. However, propagation of the fire in the main stage was
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only achieved at the simulated higher speed points. The small-size fuel noz-

zle tips used in the main stage limited the maximum fuel flow in the main

stage to approximately 160 kg/hr (350 pph) at the maximum fuel pressure that

the facility could supply. A partial propagation (six cups) in the main stage

was achieved at conditions representing the 70% engine speed point, while

full propagation was achieved at conditions representing the 77% engine speed

point. The combustor operating conditions at these points were favorable

enough to offset the adverse effects of the lean main stage dome stoichi-

ometry. Insufficient data was obtained to make a good assessment of the main

stage lean blowout characteristics.

7.3.2 Atmospheric Exit Temperature Performance Test

Performance testing of the E 3 double-annular dome development combustor

Baseline configuration was conducted on 17 April 1980 in the Cell A3W facility.

The purpose of this test was to evaluate the Baseline combustor configuration

for profile and pattern factor at simulated sea level takeoff conditions with

variations in the pilot and main dome fuel staging. This performance evalu-

ation was a continuation of an earlier performance test of this combustor con-

ducted on 20 February 1980. That test was prematurely terminated after obtain-

ing data at the simulated 6% ground idle operating condition, when the thermo-

couple rakes jammed against the test rig outer aft seal, limiting the ability

to traverse the rakes. All of the rakes were positioned inward from their

initial positions to prevent a recurrence of the problems encountered. Some

difficulty was incurred at the onset of the resumed effort. Several of the

rakes were dragging along the test rig inner aft seal. Testing was inter-

rupted and additional adjustments were made to the rake positions. When test-

ing resumed, it was evident that some of the rakes were still dragging along

the inner aft seal at several places in the test rig. However, the rakes

could be traversed without great difficulty, and it was decided to proceed

with testing. The test schedule and corresponding combustor operating con-

ditions are presented in Table XXXII.

Exit temperature data were obtained at simulated sea level takeoff inlet

conditions and overall fuel-air ratios of 0.020, the design level of 0.0244,

and 0.0260. Fuel staging modes representing pilot-to-total fuel flow splits
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of 0.5, 0.4, and 0.3 were evaluated at the 0.020 and 0.0244 overall fuel-air

ratio conditions. Pilot-to-total fuel flow splits of 0.4 and 0.3 were evalu-

ated at the 0.0260 overall fuel-air ratio condition. All exit temperature

data were reduced as uncorrected thermocouple temperatures and as corrected

temperatures using the CF6 combustor family thermocouple temperature correc-

tion curve available in the test cell data reduction computer program.

Performance results obtained at simulated 6% ground idle operating con-

ditions are presented in Figure 138. In this operating mode with only the

pilot stage fueled, the exit temperature profiles are sharply peaked outward.

This is typical of double annular combustor designs operating in this mode.

The performance results obtained from the uncorrected temperature data at the

sea level takeoff conditions are presented in Figures 139 and 140. These

results illustrate the sensitivity of the exit temperature profiles to the

pilot-to-main stage fuel split. Average and peak temperature profiles gener-

ally within the established limits were obtained at a 0.50 pilot-to-total fuel

flow split. However, once the fuel was biased to the inner annulus main

stage, the profiles became sharply peaked inward exceeding the established

limits by a considerable amount. Figure 141 shows the performance results

obtained at the design fuel-air ratio with corrected temperatures. While the

maximum and average profiles are similar to those obtained from the uncor-

rected data, the pattern factor increased approximately 10%. At the 0.50

pilot-to-total fuel flow split, a pattern factor of 0.255 is obtained. This

is very close to the goal of 0.250.

A plot of the average circumferential exit temperature distribution is

presented in Figure 142. This temperature distribution represents corrected

thermocouple data obtained at the simulated design cycle sea level takeoff

operating condition, with a 0.40 pilot-to-total fuel flow Split. For this

combustor operating mode, the peak temperatures generally occur in line with

the swirl cups while the minimum temperatures occur between swirl cups.

Cooler spots in the combustor appear to exit in the vicinity of Swirl Cups II

and 14. A posttest check of fuel nozzles revealed that the main stage nozzle

tip in Cup Ii was approximately 5% below the average of all 30 main stage noz-

zle tips in fuel flow. The pilot stage nozzle tip in Cup 14 was approximately

247



ORIGINAL PAGE 19
OF POOR QUALITY

• 6% Idle (Pilot Only)

• Atmospheric Pressure

• Corrected Temperatures

i00

o
80

o
60

03

40
40

g_

o
4_

20
.o

o
L)

0 Average Profile

A Maximum Profile

I
ZX

ZX

A

0

-1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6

fiTLocal / AT A verag e

Figure 138. Development Combustor Baseline EGT Performance Test Results.

248



OF POOR- _"':'_: '
QU4LIT_

0

_2 D
tO _ 0

_a> E

_I Q2

._ u'_ "_

1.4 _ U

0 .r-.I
/

O
oO

C]
C]

[]

/

[]

d

C'4

o

<_

_3

I

U
O

,-1

(D
(D

00
(D

O
C

O

(D

_D

_D

_D

Cm

O

m

..O

O
O

4J

O

Ox

_D

.H

auaD_ad '_qNTaH ageSSed 3TX_ _o_snqmo9

249



0

0

b-4

0 0

_ 0
_ u

.r-.t

_¢',1

,.-1

m n

•_ o

o 08
Z .,_ ,-_

_ o •

ORIGINAL PA_;_ !_

OF POOR QUALITY

I.J
.r.I

r/3

,--4

,--I

4J --3"
O--,1"

0
0

4dO

.ul II
0

000
u_ -.T c,h

SoS

©[3<]

I
O)

°r-I

0

-.4
u_

0 0,0

_ 0

<]

[]

©

<] <]

[]

[]

/

/
/

<]

[]

-.1"

0

0
I

,--I

0
0

0

0

[..9

01

0

0
0

0

0

>

o
--.1"

0,0
-,-I
r-u

250



..<I"

0

c_
II

q_
u_
0

CJ _:=

0 0
C_ _ cJ

_J 0

0 • ,-_
•,-4 m [..-I
4-1

_.O m "l:J "_J

0 _ c_ 0
Z ",_ ,'_ OJ

0 "_ 0

Q •

0
Cxl
,--I

.IJ

I_ -,-I
o'3 i._

0

:I -H

4-1

°
O I

I "D

O _
,.--4 _ O

O

<3

<3

[]

[]

El"

O

/

000_

o

0

0 0
00

_ua_._ad '_q_TaH a_ss_d _TX_ _o_,snqmoD

0
0 I

4_1

0

0

0

0

F_

0

t_

0

g_

,zn

0

0

0

0

251



ORIGINAL PAGE !_'
OF POOR QUALITY

o

0J o

t_

rj
I_ (_ 0 0

U "0 0 "_

,..-t

-----___._

e.

i

o
o ,--1

a_e_a^V £V/ I_°l/_V

®
@

®
®
@

CM

@
@

@
@

@_

@
@
@ -
@
®

®
®
®
@----
®
®
@____

o

o

o

o
o o

,.-4

O

0

0

0

"H

<U

0

0
rj

4-1

0

_4

252



17% below the average of all 30 pilot stage nozzle tips in fuel flow. These

low fuel flow levels in the two swirl cups could have produced the cooler

regions observed.

7.3.3 Missions Test

Emissions testing of the E3 double-annular dome development combustor

baseline configuration was conducted in the ACL Cell A3E test facility. This

represented the first test in which the development combustor and test rig

were operated at elevated pressure conditions. The purpose of this testing

was to evaluate the Baseline combustor design for emissions, pressure drop,

and metal temperature characteristics at combustor operating conditions along

the E 3 FPS design operating cycle. The test was conducted in two phases.

The first phase involved evaluation at 4% and 6% ground idle conditions, plus

30% approach conditions with the fuel split between the pilot and main stage

domes. The second phase of the test involved evaluation at 30% approach

condition with only the pilot stage fueled, plus all high-power operating

conditions. Bleed flows from the split duct diffuser and the outer and inner

flowpaths were extracted at levels simulating the actual engine combustor

operation at all test points. Test points and corresponding operating condi-

tions evaluated in this test are presented in Table XXXIII. During the first

phase of testing, simplex-type fuel nozzles rated at 12.0 kg/hr (26.5 pph) and

23 kg/hr (50.0 pph) were used in the pilot and main stage domes respectively

to simulate the fuel spray atomization quality expected from the engine

duplex-type fuel nozzles at the lower power operating condition. For the

higher power operating conditions, simplex-type fuel nozzles rated at 23 kg/hr

(50 pph) and 55 kg/hr (120 pph) were respectively used in the pilot and main

stage domes to obtain the required fuel flows within the test facility fuel

pump discharge pressure capacity.

The combustor instrumentation consisted of 26 static pressures and 49

grounded and capped chromel-alumel thermocouples. This instrumentation pro-

vided important data concerning various combustor pressures and metal skin tem-

peratures throughout the emissions test. The locations of this instrumentation

on the combustor hardware are illustrated in Figures 143 through 146. The

selected locations for the thermocouples were accomplished with the assistance
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Figure 143. Baseline Combustor Instrumentation Layout.
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of heat transfer personnel. Someof the thermocouples were located on the
combustor liners at places which had been observed as "hot spots" during the

previous exit temperature performance test of this combustor. A dynamic pres-
sure probe was installed through a primary dilution hole in the outer liner of

the combustor to monitor combustion frequencies and fluctuations. In addition,

numerouspressure and temperature instrumentation was installed on the test rig

vehicle. This instrumentation included upstream total pressure and air temper-
ature rakes to measure the combustor inlet total pressure and temperature.

Test rig flowpath wall static pressures provided important data concerning dif-

fuser system performance while thermocouples were used to monitor the test rig

to ensure the rig mechanical integrity. The location of the more important
test rig instrumentation is illustrated in Figure 147.

All CO,HC, and NOx emissions levels measuredwere adjusted to reflect
emissions levels that would be obtained if measuredat the actual E3 FPS

design cycle operating conditions.

At the lower power operating conditions (4%, 6%, and 30%), these adjust-

ments provided corrections which accounted for small discrepancies between

the test conditions set in the cell, and the cycle conditions represented. At

the higher power operating conditions, these adjustments primarily provided

corrections for emissions levels measuredat reduced inlet pressure and air-

flow conditions associated with the facility capacity to simulate the actual

high power design cycle operating conditions. The adjustment for the measured

NOx emission levels also includes a correction for inlet air humidity.

The results of the idle emissions testing of this Baseline combustor con-

figuration are presented in Figures 148 and 149. As observed in Figure 148,
COemissions levels of 59.5 g/kg (59.5 ib/1000 Ib) of fuel and 57.5 g/kg

(57.5 ib/1000 Ib) of fuel were obtained, respectively, at the 4%and 6%ground

idle design cycle operating conditions. It has been estimated that a COemis-

sions level of 20.7 g/kg (20.7 Ib/1000 Ib) of fuel would be required at the

6%ground idle operating condition to satisfy the program COemissions goal.
The small reduction in the measuredCOemissions level from the 4%to 6%

ground idle test condition is related to the decrease in the design cycle

fuel-air ratio which offsets the expected advantages of increased combustor

inlet pressure and temperature. At the 6%ground idle condition, a minimum
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CO emissions level of 35g/kg (35 Ib/1000 ib) of fuel was demonstrated at a

metered overall fuel-air ratio of 0.0155. It is also observed from this fig-

ure that the CO emissions levels are sensitive to changes in the fuel-air

ratio. This characteristic is similar to that observed during earlier test

programs conducted on double-annular dome combustor designs such as those

developed for NASA/GE ECCP and QCSEE programs. This appears to be related

to rapid pilot stage stoichiometry changes under conditions of pilot-only

operation in which the addition of fuel occurs in a region containing only

a portion of the total combustor dome airflow. HC emissions levels of 36

g/kg (36 Ib/1000 ib) of fuel and 22.5 g/kg (22.5 Ib/1000 ib) of fuel were

obtained, respectively, at the 4% and 6% ground idle design cycle operating

conditions. An HC emissions index of 3.0 g/kg (3.0 ib/1000 Ib) of fuel had

been estimated as the required level at 6% ground idle to satisfy the program

HC emission goal. HC emission levels at or below this target level were mea-

sured at metered overall fuel-air ratios greater than 0.0180.

Emissions were measured at the 30% power approach operating condition at

pilot-only plus pilot-to-total fuel flow splits of 0.50, 0.40, and 0.30. The

effects of these fuel staging modes on the measured CO, HC, and NO x emissions

are illustrated in Figure 150. As observed from this figure, the expected

trend of low CO emissions levels with accompanying higher NO x emissions levels

at the pilot-only operating mode is evident. However, what was not expected

was the very high CO and HC emissions levels obtained with both the pilot and

main stages fueled. The apparent cause results from poor combustion efficiency

created by excessively lean fuel-air mixtures in both domes when the relatively

low overall fuel-air ratio of 0.0140, at the 30% power condition, is divided

between the two stages. These lean conditions also contributed to the very

favorable NO x emissions levels obtained.

The adjusted CO, HC, and NO x emissions levels obtained along the E 3

FPS design cycle operating line are presented in Figures 151 and 152. Of par-

ticular interest are the NO x emission levels at the higher power operating

conditions. As observed from Figure 152, sea level takeoff NO x emissions

levels from 16.8 g/kg (16.8 Ib/lO00 ib) of fuel to 17.8 g/kg (17.8 ib/1000 ib)

of fuel were obtained. It was unfortunate that at these higher power opera-

ting conditions, additional fuel splits, lower than those indicated, could
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not be evaluated because of excessively high metal temperatures measured on

the inner liner. Thus, insufficient data were obtained at these conditions

to determine the fuel split which would produce the lowest NO x emissions

level. At the sea level takeoff condition, a NO x emission level of 17.5

g/kg (17.5 ib/1000 ib) of fuel had been estimated as necessary to satisfy

the program NO x emissions goal.

Using the emissions results from the Baseline development combustor, EPA

Parameter (EPAP) numbers, based on the EPA landing-takeoff cycle for CO, HC,

and NOx, were generated for several cases representing various combustor

operating modes at the approach and sea level takeoff conditions. These EPAP

results are compared with the E 3 program goals in Table XXXIV. The E 3 pro-

gram emissions goals are identical to the EPA 1981 standards for newly certi-

fied engines greater than 89 kN (20,000 ib) thrust. As observed from this

table, at all of the combustor operating modes investigated, the CO and HC

emissions levels were significantly above the E 3 program goals. However,

the NO x emissions levels satisfy the goal with at least 7% margin.

Smoke levels obtained are presented along with the combustor operating

conditions at which they were measured in Table XXXV. As observed, the smoke

levels for this combustor are very low. Although somewhat higher levels would

be expected at the actual design cycle conditions at high power, the smoke

levels would be expected to be well below the E 3 program smoke number goal

of 20.

At the simulated sea level takeoff operating condition, data from pres-

sure instrumentation in the diffuser section of the test rig were used to cal-

culate total pressure losses, providing a performance measurement of the split

duct diffuser design. Total and static pressures upstream of the diffuser

inlet were used to calculate the velocity profile in the test rig passage at

the inlet of the diffuser. This profile in the form of the local-to-average

Mach number ratio is shown in Figure 153. As observed, the profile is essen-

tially flat, peaked only 2% above average slightly outward from the center of

the passage. Calculated diffuser total pressure losses are presented in Table

XXXVl. These values are compared with losses measured in the full-annular

diffuser model subcomponent tests with center peaked and flat inlet velocity
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Table XXXIV. Baseline Combustor EPAP Results.

• Jet A Fuel

Mode of Operation

EPAP

Ib/1000 Ib Thrust-Hour-Cycle

co HC

Pilot Only at Approach

40/60 Split at Climb

45/55 Split at SLTO

8.20 3.03 2.78

• Pilot Only at Approach

40/60 Split at Climb

40/60 Split at SLTO

8.20 3.03 2.82

• 40/60 Split at Approach

40/60 Split at Climb

45/55 Split at SLTO

14.55 7.17 2.49

• 40/60 Split at Approach

40/60 Split at Climb

40/60 Split at SLTO

14.55 7.17 2.53

30/70 Split at Approach

40/60 Split at Climb

45/55 Split at SLTO

18.16 5.25 2.49

• Totals (1981 Standards) 3.00 0.40 3.00
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Table XXXV. Baseline Combustor Smoke Results.

• Jet A Fuel

• Cell A3 Operating Conditions

P3 (T3 Wat___emK FA

466 7.88

3.38 (839) (17.33)

4.27

11.91

16.38

16.43

f/a

0.0136

Combu s to r

Wf Pilot SAE Smoke

Wf Total Number

1.00 3.45

493 10.79

(887) (23.74) 0.0115 1.00 4.38

634 26.34

(1141) (57.74) 0.0140 1.00 0.94

782 31.06

(1407) (68.33) 0.0223 0.35 2.24

814 30.67

(1465) (67.48) 0.0246 0.40 2.16

Comments

4% Ground Idle

6% Ground Idle

30% Approach

85% Simulated

100% Simulated
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profiles. As observed from this comparison, the test rig diffuser performance

generally agreed well with the annular diffuser subcomponent test results

obtained with a flat velocity profile. The discrepancy in the outer dome loss

is most likely related to erroneous outer dome pressure data obtained from the

test rig. The comparison also shows that the test rig diffuser performance

was considerably below that obtained in the diffuser subcomponent testing with

the center peaked velocity profile. It is believed that the level of diffuser

performance observed in the test rig is related to the low level of turbulence

in the test rig flow upstream of the diffuser, which results from the absence

of a velocity profiler. Improvement could be achieved by installing a pro-

filer with a center peaked characteristic into the E3 test rig.

Table XXXVI. Calculated Diffuser Performance for Baseline Test.

Description

Prediffuser

Outer Passage

Outer Dump

Total Outer

Prediffuser

Inner Passage

Inner Dump

Total Inner

Centerbody

Outer Dome

Inner Dome

• Diffuser Total Pressure Losses

Results from

Combustor

Emissions Test, %

Diffuser Test

Flat Profile

1.86

1.83

3.69

1.79

0.99

2.78

2.30

2.53

1.72

2.12

I .92

4.04

1.93

1.12

3.05

2.77

1.16

1.47

Diffuser Test

Center Peaked

Profile

1.31

I .66

2.97

I.I0

0.99

2.09

I.90

1.19

I .27
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Measured overall combustor pressure drops and pilot and main stage dome

pressure drops are plotted against the square of the combustor inlet flow

function parameter along the E 3 FPS design cycle operating line in Figure

154. At sea level takeoff, an overall combustor pressure drop of 5.5% was

obtained compared to the engine design value of 5.0%. Prior to the initial

testing of this combustor configuration, it had been determined that the total

combustor open hole flow area was about 2% less than design. Both the pilot

and main stage dome pressure drops appear to be a little low. Pressure drops

across the liners were between 2% and 3% while levels of 3% and 3.5% were

measured across the centerbody structure.

Dynamic pressures were recorded on tape and later reduced to provide the

absolute levels and frequencies. The reduced data indicated that the absolute

dynamic pressure levels were below (I.0 psi) peak-to-peak at all operating

conditions with no apparent dominant frequencies.

Combustor metal temperatures measured during testing are plotted against

the combustor inlet temperature in Figures 155 through 163. To determine the

locations of these indicated temperatures, match item numbers on these figures

with the item numbers shown on the instrumentation layout shown in Figures

143 through 146. A maximum outer liner temperature of 1232 K (1757 ° F) was

observed on Panel 1 at the simulated sea level takeoff operating condition

with a 0.45 pilot-to-total fuel flow split. A maximum inner liner temperature

of 1175 K (1655 ° F) was observed on Panel 1 at the simulated sea level take-

off operating condition with a 0.40 pilot-to-total fuel flow split. These

excessively high metal temperatures were experienced within a narrow range of

fuel splits and limited the ability to obtain emissions data over a wider

range of fuel splits. The thermocouples that indicated these temperatures

were located slightly aft and approximately 3 ° clockwise aft looking forward

from the dilution thimble directly in line with the top swirl cup in each

dome. Temperature paint applied to two sections of each liner indicated a

repetitive pattern of these "hot spots" in the same relative location in the

vicinity of each dilution thimble on both the outer and inner liners. Indi-

cated metal temperatures on the centerbody structure were within acceptable

limits. A maximum metal temperature of 1160 K (1628 ° F) was observed on the

main stage side of the multijet cooling ring at the simulated sea level take-

off condition with a pilot-to-total stage fuel flow split of 0.40. Peak

2?2
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metal temperatures on the crossfire tubes through the centerbody structure

between the pilot dome annulus and the main dome annulus remained below 1038 K

(1400 ° F) at all test conditions. There had been some concern that the tem-

perature of these parts might become excessive due to conducting hot gases

from the pilot dome to the main dome for ignition of the main stage. Out of a

total of six thermocouples located on the pilot dome, only two were reading

during testing. One of these thermocouples, located on the splash-plate sur-

face in the lower right corner (aft looking forward), indicated a peak tem-

perature of 894 K (1150 ° F). The other of these two thermocouples, located on

the pilot dome spectacle plate directly between swirl cups, indicated a peak

metal temperature of 825 K (1025 ° F). This was just slightly above the inlet

temperature of 814 K (1005 ° F) at the sea level takeoff condition. Three out

of six main dome skin thermocouples were active during testing. Two of these,

located on the splash-plate surface in the upper left and lower right cor-

ners (aft looking forward), indicated peak metal temperatures only about 28 K

(50 ° F) above the inlet temperature of 814 K (1005 ° F) at the sea level take-

off condition. The other metal thermocouples, located on the main dome spec-

tacle plate directly between swirl cups, indicated a peak metal temperature

of 829 K (1032 ° F). These pilot and main stage dome temperatures are signifi-

cantly below the maximum allowable metal temperature and provide strong evi-

dence in support of a significant reduction in the cooling flow levels of each

dome.

7.3.4 Concludin$ Remarks

Testing results obtained from the ground start ignition, exit temperature

performance, and emissions evaluations of the E 3 double-annular Baseline

development combustor were very encouraging, especially considering that this

was the first test of this advanced combustor design. However, improvements

in all three combustor performance areas were required in order to achieve

all of the combustion system goals of the E 3. Key problem areas identified

from this test series included:

• Improving main stage crossfire and propagation

• Reducing the idle emissions
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Reducing the CO and HC emissions at the 30% power condition in the

staged combustor operating mode

Despite obtaining an exit temperature pattern factor which closely

approaches the program goal, additional combustor development design optimi-

zation would be required to simultaneously satisfy the exit temperature per-

formance and emissions goals.

Immediate attention was directed at identifying combustor design modifi-

cations that would provide significant reductions in the ground idle and

staged approach emissions levels, plus provide reductions in the outer and

inner liner Panel 1 metal temperatures. This would be accomplished by provid-

ing added Panel 1 cooling, enriching the pilot stage primary combustion zone

to produce more favorable conditions for CO and HC consumption, provide a

leaner main stage primary combustion zone to achieve further reductions in

the NO x emissions levels at high power operating conditions, and modify dilu-

tion air to provide improvement to the exit temperature performance, and

maintain the combustor overall pressure drop.

7.4 MOD I DEVELOPMENT COMBUSTOR TEST RESULTS

The Mod I development combustor featured an enriched pilot stage primary

combustion zone. This was accomplished by a reduction in the pilot stage

swirl cup flow, the pilot dome splash-plate cooling flow, and the pilot stage

primary dilution flow. The pilot dome outer ring cooling flow was increased

to provide added film cooling for the forward panel of the outer liner. Outer

liner trim dilution was also increased to provide attenuation for the exit

temperature radial profile resulting from pilot only operation. This combus-

tot configuration also was redesigned with a leaner main stage primary zone

accomplished by an increase in the main stage swirl cup flow. The main dome

inner ring cooling flow was increased to provide added film cooling flow for

the forward panel of the inner liner. Inner liner trim dilution was also

increased to provide improvement in the exit temperature performance at high

power operating conditions. In addition, the outer liner, centerbody, and

inner liner assemblies were rotated 6 ° clockwise aft looking forward with

respect to the domes relocating the pilot stage and main stage primary dilu-

tion holes from in-line to between the swirl cups. With the rotation of
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the cente_body, the two pilot-to-main stage crossfire tubes became located

between swirl cups. The decision to change to "between cup" primary dilution

was based upon sector combustor subcomponent tests. Results from this test-

ing had demonstrated that significant reductions in idle emissions could

be obtained by adopting the "between cup" orientation. The design modifica-

tions featured in the Mod I combustor configuration are illustrated in Figure

164. The resultant changes in the combustor airflow distribution are pre-

sented in Appendix E.

7.4.1 Atmospheric Ground Start l_nition Test

Atmospheric ground start ignition testing of the Mod I development com-

bustor was initiated on 16 July 1980. Test points evaluated simulated combus-

tor inlet conditions along the E 3 (9/79) ground start operating line and are

presented in Table XXXVII.

Table XXXVII. Development Combustor Mod I Atmospheric Ignition

Test Point Schedule.

XNRH, T3

% K (° F)

21

28

32

46

58

7O

77

P3 W36

at___mm kg/s (pps)

289 (60) 1.00 1.25 (2.76)

289 (60) 1.00 1.69 (3.71)

314 (105) 1.00 1.55 (3.40)

344 (160) 1.00 1.65 (3.64)

383 (230) 1.00 1.86 (4.09)

429 (312) 1.00 1.94 (4.26)

503 (445) 1.00 2.33 (5.13)

The fuel nozzle assemblies used had the E 3 test rig fuel nozzle bodies.

The nozzle tips installed in the pilot dome were rated at 12 kg/hr (26.5 pph),

while those installed in the main dome were rated at 4.5 kg/hr (I0 pph).
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Shutoff-type valves were installed into every other main stage fuel line pig-

tail to allow evaluating the main stage crossfire and propagation characteris-

tics using a uniform 15 on-15 off fuel nozzle operating mode.

During the initial test run, pilot stage ignition and propagation pro-

ceeded without difficulty at all points of the test schedule. However, main

stage crossfire was not achieved at any of the test conditions evaluated.

Test facility exhaust plenum temperature limitations prevented exceeding a

main stage fuel flow level of 600 pph with the pilot stage fueled and burn-

ing. From visual observations, it was evident that fire from the pilot stage

swirl cups, now between the two crossfire tubes, was not penetrating into the

main stage dome annulus through the crossfire tubes. Without conduction of

hot pilot stage gases into the main stage dome to provide an ignition source,

the ignition of the main stage was unsuccessful. During ground start ignition

evaluation of the Baseline combustor configuration, it was observed that main

stage ignition was obtained from hot pilot-gas penetrating into the main stage

dome annulus through the crossfire tubes located directly in line with Swirl

Cups Nos. 6 and 21. The inability to succesfully crossfire the main stage in

the Mod I configuration was concluded to be the result of the "between cup"

location of the existing crossfire tubes. It was decided to remove the com-

bustor from the test rig to incorporate two additional crossfire tubes in the

centerbody structure. These additional crossfire tubes were located 180 °

apart and perpendicular to the alignment of the existing crossfire tubes.

Upon reassembly of the combustor, the new crossfire tubes were located

directly in line with Cup No. 6 and the igniter Cup No. 21. After completion

of the rework, the combustor was installed back into the test rig to resume

the ground start ignition evaluation. Through the duration of the atmospheric

ground start ignition testing, main stage crossfire was achieved.

Test results obtained from this ground start ignition evaluation of the

E 3 development combustor Mod I configuration are presented in Figures 165

and 166. As observed from Figure 165, significant improvement in pilot igni-

tion, propagation, and total blowout were achieved compared with the results

of the Baseline configuration. It is noted that the Baseline configuration

ignition data was obtained with the use of a hydrogen torch ignition system

which generally provides better ignition results than would be obtained with
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the use of an electrical spark discharge ignition system, particularly at the

lower speed points. The Mod I configuration demonstrated full propagation of

the pilot stage with between 50% and I00% fuel margin compared to the E 3

ground start cycle combustor fuel-air ratio operating line, with a minimum of

40% blowout margin. These observed improvements reflected the benefit of the

enriched pilot stage stoichiometry of this configuration. Ignition of the

main stage was investigated for two fueling modes. In one mode, fuel was

supplied to all 30 main stage nozzles. In the second mode, all main stage

nozzles in even numbered cups were shut off. The main stage cup in line with

'the igniter and crossfire tube (Cup No. 21) was fueled. In general, the main

stage ignition characteristics of the Mod I configuration were no better than

those demonstrated in the Baseline configuration. In the 30 nozzle mode,

overall fuel-air ratios exceeding the E 3 9/79 ground start cycle operating

line were required to ignite the two main stage swirl cups in line with the

crossfire tubes. Full propagation of the main stage demonstrated only at the

simulated 77% core engine speed overating condition. However, the propagation

fuel-air ratio required was well above the required fuel schedule operating

line. Partial propagations were obtained at 48%, 58%, and 70% simulated core

engine speed operating conditions. These also occurred at fuel-air ratios

well above the requirement. Some benefit in the ignition characteristics of

the main stage was obtained using the 15 on-15 off nozzle operating mode.

However, full or partial propagations were not obtained in this mode. The

adverse effects of the greater effective swirl cup spacing eliminated the

benefit of locally richer conditions in the vicinity of the fueled swirl cups.

It was observed that the flame in the main stage annulus had difficulty hold-

ing position. This flame instability appeared to result from the lean stoi-

chiometry and high dome velocities produced from the increased main stage air-

flow of this configuration. The main stage swirl cups in the Mod I configu-

ration have approximately 12% increase in airflow. Overall main stage primary

zone airflow is up by 14% compared to levels calculated for the baseline com-

bustor configuration.

7.4.2 Atmospheric Exit Temperature Performance Test

Performance testing of the Mod I configuration was conducted on 11-12

August 1980. The purpose of this test was to evaluate the Mod I combustor
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configuration for profile and pattern factor at simulated sea level takeoff

conditions at various pilot and main domefuel flow ratios. In addition,

data was also obtained at both conditions simulating 46%and 58%core engine
speed along the E3 9/79 ground start operating line, and at simulated 6%

ground idle operating conditions with the pilot stage only fueled.

Fuel-air ratios set at both subidle operating conditions were limited to

0.0255 because of the facility fuel pumpdischarge limitations using the noz-

zle tips selected for this test. The E3 9/79 start cycle defines fuel-air

ratios of 0.031 and 0.028 respectively for the 46%and 58%core speed oper-

ating conditions. Prior to testing, the E3 exit temperature traverse rakes

were modified to reduce the rake body height dimension by 0.I0 inch. This
modification, shownin Figure 133, was madeto prevent the interference and

rubbing problem experienced during the Baseline combustor performance test.

The test point schedule and corresponding combustor operating conditions are
presented in Table XXXVIII.

The E3 test rig fuel nozzle assemblies were used featuring nozzle tips

rated at 2.3 kg/hr (5 pph) in the pilot stage and nozzle tips rated at 4.5
kg/hr (I0 pph) in the main stage.

Indicated exit gas temperatures obtained represented corrected thermo-

couple readings. A thermocouple radiation loss correction was generated for
the E3 combustor using existing corrections for the CF6and FlOl combustor

families. This correction characteristic is shown in Figure 167. It was
incorporated into the data reduction program used to handle E3 combustor
testing.

Test results obtained at the subidle operating conditions and at the 6%

ground idle operating condition, are presented in Figure 168. As anticipated,

with the pilot stage only fueled, the average and maximumprofiles are sharply
peaked outward. The anticipated attenuation in these outer peaked profiles

did not occur. It was interesting to note that the average and maximumpro-
files at the 6%ground idle condition were more severe than those obtained at

the subidle conditions. This is related to the lower average gas temperature
rise, and high maximumgas temperatures associated with the lower fuel-air
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ratio (0.0123 as compared to 0.0255) and higher combustion efficiency at the

6% ground idle condition. At all three low power conditions, pattern factors

in excess of 1.00 were obtained.

At the simulated SLTO operating conditions, exit gas temperature data

was obtained at pilot-to-total fuel splits of 0.5, 0.4, and 0.3. At each

fuel split evaluated, full propagation of the fire within the main stage could

not be achieved. It was observed that several main stage cups were not burn-

ing, while others appeared to be unstable. Attempts to achieve full propaga-

tion of the main stage by increasing main stage fuel flow were not successful.

As a result, temperature traverse data was obtained at the design fuel-air

ratio (0.0244) with a partially burning main stage annulus. An analysis was

conducted to explain why full propagation of the main stage could not be

achieved. The results indicated that equivalence ratios in the main stage

swirl cup were near or below the lean stability limit, as determined from the

results of the ground start ignition test.

The exit temperature data that was obtained indicated that a 60 ° section

of the combustor between Cups 9 and 14 had stable main stage combustion at all

three fuel splits evaluated. The data obtained from this combustor annulus

section was used to determine the average and maximum profiles presented in

Figures 169 to 171. At a pilot-to-total fuel flow split of 0.5, the average

and maximum profiles are within the limits. A pattern factor of 0.243 was

obtained at 90% of the passage height, compared to the target value of 0.250.

A maximum profile within the required limit was also obtained at a pilot-to-

total fuel flow split of 0.4. At this condition, a pattern factor of 0.244

was obtained at 30% of the passage height. However, the average profile

exceeded the required limit below 40% of the passage height. At a pilot-to-

total fuel flow split of 0.3, both the average and maximum profiles are

peaked inward, exceeding the required limits by a considerable amount. At

this fuel split, a pattern factor of 0.396 was obtained. The average and

maximum profiles obtained from the Mod I combustor configuration show signif-

icant improvement in the inner region of the exit passage over the Baseline

combustor configuration. This most probably reflects the large increase in

the inner liner trim dilution featured in the Mod I combustor.
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7.4.3 Emissions Test

As part of the emissions testing of the Mod I combustor configuration,

additional ground start ignition testing was conducted at the actual ground

start cycle inlet pressures. Ignition, propagation, and blowout of the pilot

and main stages were determined from thermocouples mounted onto the five

equally spaced gas sampling rakes located in the test rig instrumentation

spool. All sampling rake thermocouples plus numerous other combustor hard-

ware skin thermocouples were connected to a thermocouple temperature display

(Metrascope) for continuous monitoring.

The E3 test rig fuel nozzle assemblies were used for this test. Nozzle

tips rated at 12 kg/hr (26.5 pph) were installed in the pilot stage. Nozzle

tips rated at 23 kg/hr (50.0 pph) were installed in the main stage. These

nozzle tiDs were also used for the low power emissions testing.

The pilot and main stage ignition, propagation, and blowout characteris-

tics obtained at actual ground start cycle combustor inlet pressure conditions

are shown in Figure 172. Main stage data presented in this figure is based

on the pilot stage operating at a fuel flow level at which full pilot stage

propagation was achieved. Therefore, this data represents a worst case state-

ment for the overall fuel-air ratios at which the main stage ignition, propa-

gation, and lean blowout were obtained. In reality, the pilot stage would

operate at the lowest fuel flow level at which all 30 swirl cups remained

burning. However, since it would be difficult to determine this level in the

pressure rig, the above approach was selected. It was observed that the igni-

tion and propagation characteristics of the combustor improve substantially

when operated at true cycle pressure conditions, as compared to atmospheric

operation. However, little if any impact was demonstrated on the blowout

characteristics. Even with the pressure performance improvement, the ground

start ignition, propagation, and blowout characteristics of the main stage

were not adequate to meet the (9/79) engine ground start requirement.

Emissions testing of the Mod I configuration was conducted. The purpose

of this test was to evaluate this combustor design for emissions, pressure

drop, and metal temperature characteristics at combustor operating conditions
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along the E 3 FPS operating line. The test was conducted in two phases. The

first phase involved evaluation at 4% and 6% ground idle conditions. The

second phase of the test was directed at evaluation at higher power operating

conditions. This pause in testing was necessary to allow for a change in the

fuel nozzle tip sizes in each dome. In the second phase of the test, nozzle

tips rated at 23 kg/hr (50 pph) were installed into the pilot stage, while

nozzle tips rated at 55 kg/hr (120 pph) were installed into the main stage.

It had been intended to evaluate the combustor at 30% approach conditions, and

at simulated SLTO conditions. However, problems with the facility operation

resulted in a severe test schedule time restriction. This time problem

coupled with indications of excessively high centerbody metal temperatures

prevented the acquisition of all of the desired data. As a result, only a

limited amount of high power emissions data was obtained at combustor oper-

ating conditions that deviated from the E 3 FPS design cycle. Test points

and corresponding operating conditions evaluated in this test are presented in

Table XXXIX.

Combustor instrumentation consisted of 15 static pressures and 27 grounded

and capped chromel-alumel thermocouples. The locations of this instrumentation

on the combustor hardware is illustrated in Figures 173 to 176. In addition,

data from numerous pressure and temperature instrumentation affixed to the test

rig vehicle were also obtained. This instrumentation included upstream total

pressure and air temperature rakes to measure the combustor inlet total pres-

sure and temperature. Test rig flowpath wall static pressures provided data

concerning diffuser system performance, while thermocouples were used to moni-

tor the test rig to assure the rig mechanical integrity.

The results of the idle emissions testing of the Mod I combustor configu-

ration are presented in Figures 177 to 180. As observed from Figure 177, CO

emission levels of 48 g/kg (48 ib/lO00 Ib) of fuel and 30 g/kg (30 Ib/lO00

lb) of fuel were obtained, respectively, at the 4% and 6% ground idle design

cycle operating conditions. These compare to levels of 59.9 g/kg (59.9 Ib/

i000 ib) of fuel and 57.5 g/kg (57.5 Ib/1000 Ib) of fuel demonstrated during

evaluation of the Baseline configuration. At 6% ground idle, the minimum CO

emission level occurred at the design cycle fuel-air ratio. It has been

estimated that a CO emission level of 20.7 g/kg (20.7 ib/1000 Ib) of fuel at
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the 6% ground idle operating condition would satisfy the E 3 Program CO

emission goal. Hydrocarbon emission levels of 5.5 g/kg (5.5 ib/1000 Ib) of

fuel and 4.0 g/kg (4.0 ib/lO00 Ib) of fuel were obtained, respectively, at

the 4% and 6% ground idle design cycle operating conditions. Levels of 36

g/kg (36 ib/1000 ib) of fuel and 22.5 g/kg (22.5 ib/lO00 ib) of fuel were

demonstrated during evaluation of the Baseline configuration. An HC emission

index of 3.0 g/kg (3.0 ib/1000 ib) of fuel has been estimated as the required

level at 6% ground idle to satisfy the program HC emission goal. Hydrocarbon

levels at or below this target goal were demonstrated at 6% ground idle

operating conditions at metered overall fuel-air ratios greater than 0.014.

Prior to testing, each element of the five gas sampling rakes was flowed

to determine if all elements of each rake were open and flowing freely. The

results of this check indicated that, in general, the flow from the elements

of each rake were unbalanced. Elements sampling the inner region of the com-

bustor exit annulus flowed more than those in the outer region. Attempts

were made to clear restrictions in the elements and obtain better uniformity.

Although these efforts improved the situation, partial restrictions remained

in some outer elements of the rakes. During the low power emissions testing,

gas sampling problems were experienced. It was evident that as time pro-

gressed, the sampling problem became more severe, as illustrated in Figure

179. By the conclusion of the low power emissions testing one rake became

almost totally restricted, while the others obtained samples which biased the

unfueled inner annulus region. This problem lends suspicion to the quality

of the emissions data obtained.

Time restrictions and facility related problems experienced during the

high power emissions evaluation prevented the acquisition of data at 30%

approach operating conditions. While attempting to establish the simulated

SLTO operating conditions, indications of excessively high centerbody metal

temperatures were observed. It was decided to obtain emissions and perfor-

mance data at the combustor operating conditions existing at the time and not

continue the test in order to prevent possible damage to the combustor hard-

ware. These combustor operating conditions were not representative of the

E 3 FPS design cycle. NO x emission data obtained at these conditions were
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plotted against the E3 design cycle severity parameter. This yields a
linear relation that can be used for extrapolating to the high-power oppor-

tunity conditions. The resulting NOx emission characteristics shownin

Figure 181 yield a NOx emission index of 17.7 g/kg (17.7 Ib/1000 ib) of
fuel at the E3 SLTOcondition. This is nearly identical to the NOX emis-

sions levels obtained with the Baseline configuration. At the SLTOcondition,

a NOx emission level of 17.5 g/kg (17.5 Ib/lO00 ib) of fuel had been esti-
mated as required to satisfy the E3 Program NOx emission goal. Unfortun-

ately, at the high power condition evaluated, additional fuel splits could
not evaluated. Thus, insufficient data was obtained to determine what fuel

split would produce the lowest NOx emission level.

Prior to conducting the high-power emissions test, the gas sampling rakes
were flow checked and cleansed out as muchas possible. As before, this pro-

cedure failed to achieve a satisfactory rake element flow distribution. Thus,

emissions data obtained at the high power conditions reflected similar sam-

pling problems as experienced during low power emissions testing. At the con-

clusion of the high power emissions testing, it was observed that two outer

elements of one gas sampling rake and a single outer element of another rake

had been burned away. This problem was determined to be related to insuffi-

cient water cooling caused by setting water pressure levels too low for the

size water hose used in the test rig instrumentation spool.

EPAparameter numbers, based on the EPA landing/takeoff cycle, for CO,

HC, and NOx were generated for combustor operation at 6%ground idle, and

pilot only at approach. Becauseof the lack of data at the approach and climb

operatinB conditions, results obtained with the Baseline combustor configura-
tion at these conditions were used. These EPAPresults are comparedagainst

those determined for the Baseline configuration and the E3 Program goals in

Table XL. This table shows that significant improvements in COand HCemis-

sions were achieved comparedto the Baseline configuration. Carbonmonoxide

and HCemissions closely approached their respective goals. The NOx emis-

sions levels demonstrated would meet the goal.
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Table XL. ModI CombustorEPAPResults.

• 6%Ground Idle
• Pilot Only at Approach
• Jet A Fuel
• FPSDesign Cycle

EPAP

CO HC

4.55 0.57 2.81 Mod I

8.22 3.10 2.81 Baseline

3.0 0.40 3.0 E3 ProgramGoals

At the 6%ground idle design cycle operating condition, data from pres-

sure taps located in the diffuser section of the test rig were used to calcu-
late total pressure losses, thus providing a measurementof the performance

of the split duct diffuser. An insufficient amountof usable data was obtained

at the high power condition to makean assessment of the diffuser performance

at these test conditions. Total and static pressures upstream of the diffuser

inlet were used to calculate the velocity profile in the test rig passage at

the inlet of the diffuser. This profile in the form of the local-to-average
Machnumber ratio is shownin Figure 181. The profile is flat, peaked only

1.6%above average and slightly inward from the center of the passage. Calcu-

lated diffuser total pressure losses are presented in Table XLI. These values

are comparedwith losses calculated from measureddata obtained from evalua-
tion of the Baseline combustor configuration at simulated SLTOoperating con-

ditions, and to losses measured in the full-annular diffuser model subcompo-

nent tests with a flat inlet velocity profile and passage flow splits similar
to those calculated for the ModI combustion system. In general, the test

rig diffuser performance calculated from the Mod I test data agrees well with

the performance calculated for the Baseline combustor test and the diffuser

model test. However, the Mod I data shows a sharp increase in the inner dome

loss. This was most probably due to instrumentation problems. Due to damaged

instrumentation, pressure losses for the centerbody and the outer domeflow
streams could not be determined.
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Table XLI. Calculated Diffuser Performance for Mod I Test.

Mod I Baseline Diffuser Test

Configuration Configuration Flat Profile

Total Outer 3.78 3.69 4.04

Total Inner 3.14 2.78 3.05

Centerbody No Data 2.30 2.77

Outer Dome No Data 2.53 1.16

Inner Dome 2.57 1.72 1.47

Measured overall combustor pressure drops and main stage dome pressure

drops were plotted against the square of the combustor inlet flow function

parameter along the E 3 FPS design cycle operating line in Figure 182. The

pilot stage dome pressure drop characteristics could not be obtained because

of the damaged upstream pressure instrumentation. At SLTO operating condi-

tions, an overall combustor pressure drop of ~6% is estimated. This com-

pared to a value of 5.5% measured in the baseline combustor test and the

engine combustor design value of 5.0%. The measured total combustor flow area

of the Mod I configuration was nearly identical to the baseline configuration.

The higher than anticipated overall total pressure loss was related to diffi-

culty experienced in obtaining good combustor exit total pressures. Some of

the difficulty appeared to be associated with facility hookup problems. Since

the gas sampling rakes were used to measure exit total pressure, the sample

line restrictions evident during testing also contributed. Pressure drops

across the liners were between 2% and 3%. Because of damaged instrumentation,

pressure drops across the centerbody structure could not be determined.

Combustor metal temperatures measured during emissions testing are

plotted against the combustor inlet temperature in Figures 183 through 192.

The locations of these temperatures can be obtained by locating the specific

thermocouple item number on the combustor instrument layout presented in

Figures 173 through 176. As discussed earlier, excessively high metal tem-

peratures indicated on the centerbody structure contributed to the premature

termination of high-power emissions testing. It was later determined that
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five of the six thermocouples located on the centerbody had secondary junc-

tions exposed to the hot gas stream. Thus, the validity of indicated temper-

atures from these thermocouples is highly questionable. This is supported by

detailed inspection of the centerbody hardware, which revealed no indication

of high metal temperatures. Thermocouple Item 340 on the pilot side of the

centerbody had no indication of secondary junctions. Pilot dome splash plate

temperatures 139 K (250 ° F) above the combustor inlet temperature were indi-

cated, an increase of approximately 83 K (150 ° F) over temperatures measured

on the Baseline combustor configuration. This change was less than anticipated

based on the large reduction in the pilot stage splash plate cooling flow fea-

tured in the Mod I combustor configuration. With the exception of outer liner

Panel 2, indicated liner metal temperatures generally decreased, compared to

the baseline levels. The decrease was more substantial along the inner liner.

It is interesting to note that the highest indicated metal temperature along

the inner liner was located across from a pilot-to-main stage crossfire tube.

This same area on the inner liner was the hottest spot indicated along the

inner liner in the Baseline combustor evaluation. No explanation linking the

hot-spot location with the crossfire tube was established.

7.4.4 Concluding Remarks

The results of evaluating the Mod I development combustor showed signifi-

cant reductions in ground idle emissions levels with little effect on the high

power NO X emissions level. Significant improvements in pilot stage ground

start ignition characteristics, as well as exit temperature performance, were

also demonstrated. However, further improvements in all of these performance

areas were necessary to evolve a combustor design capable of demonstrating all

of the combustion system goals for the E 3. A major problem identified

involved the poor ignition and propagation characteristics of the main stage.

Substantial improvement would be required to achieve main stage crossfire and

propagation during ground start operation, within the fuel schedule defined in

the E 3 (9/79) ground start cycle.

To address the improvement needs identified, attention was directed to

defining further combustor design modifications. These modifications included:

redistributing the air in the pilot stage primary zone to provide further
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reductions in ground idle emissions; significantly enrichening the main stage

primary zone to provide better ignition and propagation; and additional main

stage trim dilution to further improve the exit temperature performance. In

addition, increased cooling flow would be supplied to the centerbody structure

as a precaution against exceeding metal temperature limitations.

7.5 MOD II AND MOD III DEVELOPMENT COMBUSTOR TEST RESULTS

Engine starting studies were performed by Systems Engineering using the

existing E 3 engine cycle model and the E 3 9/79 ground start operating

cycle. The fuel schedule generated from these studies along with combustor

exit gas temperature profiles measured in the pilot-only mode of operation

were used as inputs to conduct a heat transfer analysis of the high pressure

and low pressure turbine systems. The results of this analysis indicated that

high combustor fuel-air ratios along with sharply outward peaked temperature

profiles associated with pilot-only operation along the 9/79 ground start oper-

ating line combined to produce excessively high blade metal temperatures in

both the high pressure and low pressure turbine systems. To reduce the effects

of these high gas temperatures in the subidle region, it was decided to start

the E 3 engine with both domes of the combustor burning. The original design

intent of the combustor main stage dome was to provide a lean primary zone with

high velocities and low residence times to reduce high-power pollutant emis-

sions such as NO x.

However, the high dome velocity, couples with the small dome height of

the original main stage configuration, adversely affected the ignition capa-

bility, particularly in the very severe ignition environment associated with

operation in the subidle region. To enhance the ignition performance of the

main stage dome at ground start conditions, various hardware modifications

were evaluated in several development combustor configurations.

In the Mod IIA combustor configuration, the pilot stage swirl cup airflow

was decreased by reducing the area of the secondary swirler. The pilot stage

primary dilution was increased to a level similar to the baseline configura-

tion. Outer liner Ring No. 1 cooling flow was reduced by closing off every

fifth cooling hole in both the outer liner cooling Ring No. 1 and the pilot
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domeouter cooling ring. Both features feed the first cooling slot. The

pilot side centerbody forward cooling flow was increased by enlargement of

the cooling boles. Main stage swirl cup airflow was decreased by signifi-

cantly reducing the secondary swirler area. The main stage primary dilution

was increased ~4%Wc by increasing the thimble hole diameter. The main side

centerbody forward cooling flow level was increased by enlargement of the
cooling holes. Inner liner Panel 2 dilution holes were introduced. The

pattern featured 60 holes equally spaced around the circumference directly

in-line with and between all swirl cups. In addition to these modifications,

the trailing edge of the centerbody structure was shortened by 1.78 cm (0.70

inch). These design modifications were intended to improve idle emissions,

improve main stage ignition characteristics, provide better cooling of the

centerbody structure, and reduce the trailing edge massof the centerbody

structure. The reduction in the centerbody length was an engine combustor

design consideration incorporated into the development combustor.

The Mod liB combustor configuration modifications involved blocking off
all inner liner Panel 2 dilution holes. Observations of the Mod IIA test

clearly indicated that the presence of this dilution flow was very detrimen-
tal to the main stage ignition.

In the Mod IliA combustor configuration, the main stage swirl cup air-

flow was further reduced by blocking off every other primary swirler vane

passage. Main stage splash-plate cooling flow was reduced by closing off 46

of 112 holes per splash-plate. The main stage domeouter cooling ring flow
was reduced by closing off every other hole in the ring plus six additional

holes in line with the crossfire tubes. This provided a sheltered region of

11 consecutive blocked off cooling holes in line with the crossfire tubes.

These reductions in main stage domeflow were intended to further enrichen

the main stage dome, plus reduce the main stage domevelocity to levels simi-
lar to those in the pilot stage dome. The outer liner and inner liner aft

dilution was increased to maintain the overall combustor pressure drop. The

crossfire tubes were replaced with new tubes that featured extended lengths

along the upstream surface. The extended length was intended to provide

additional shelter for the combustion gases passing through the crossfire

tubes allowing them to penetrate deeper into the main stage domeannulus.
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In the ModI[IB configuration, modification involved only blocking off

pilot side centerbody forward cooling flow in line with the crossfire tubes.
This was to eliminate the film of cooling air that passes over the crossfire

tubes, enabling the pilot stage combustion gases to more easily pass through
the crossfire tubes onto the main stage annulus. Illustrations of the hard-

ware modifications featured in these four combustor configurations are pre-

sented in Figures 193 and 194. Estimated combustor airflow distributions for

each configuration can be obtained in Appendix E.

7.5.1 Atmospheric Ground Start lsnition Test

All four combustor configurations were tested for ground start character-

istics using nozzle tips rated at 12 kg/hr (26.5 pph) installed in both the

pilot and main stage swirl cups. The purpose of this series of tests was to

evolve combustor design features that would result in main stage ignition and

lean extinction characteristics within the fuel schedule requirements of the

E 3 9/79 ground start cycle operating line. To investigate the effect of

high combustor airflows on ignition, additional testing was conducted on the

Mod IIIB configuration in which combustor airflows were increased 15% and 30%

above the cycle level at the 32%, 46%, and 77% corrected core engine speed

points. Without heavy bleeding of the compressor, engine combustor airflow

levels in the start region could be significantly greater than currently esti-

mated in the ground start cycle. Prediffuser and combustor aft bleed flows

were not used in this test series. Test points and corresponding operating

conditions are presented in Table XLII.

Test results obtained from ground start ignition evaluation of the Mod

IIA combustor configuration are presented in Appendix F. The lightoff char-

acteristics of the pilot stage swirl cup in line with the igniter were similar

to the Mod I combustor configuration. Full propagation of the pilot stage was

considerably more difficult to achieve. The main stage crossfire and propaga-

tion characteristics were very poor. Full main stage propagation was achieved

only at the simulated 77% corrected core speed test point. Observations made

during the test revealed an unusually strong flow of air passing along the

main side of the centerbody trailing edge and penetrating deeply into the
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Table XLII. Mod II and III Atmospheric Ignition
Test point Schedule.

a E 3 9/79 SLS Ground Start Operating Cycle

Atmospheric Inlet Pressure

ORIGIN,_L PAGE 18

OF POOR QUALITY

PCNHR, %

Test

Point

21

28

32

46

58

70

77

32

32

46

46

77

77

Combustor

Inlet Conditions

WComb P3,

kg/s (pps) atm

1.25 1.00

(2.76)

1.69 1.00

(3.71)

1.55 1.00

(3.40)

1.65 1.00

(3.64)

1.86 1.00

(4.09)

1.94 1.00

(4.26)

2.33 1.00

(5.13)

1.70 1.00

(3.75)

1.94 1.00

(4.26)

1.82 1.00

(4.00)

2.06 1.00

(4.34)

2.54 1.00

(5.59)

2.89 1.00

(6.35)

T3,

K (° F)

289

(60)

289

(6O)

314

(105)

344

(160)

383

(230)

429

(312)

503

(445)

314

(105)

314

(I05)

344

(160)

344

(160)

503

(445)

503

(445)

Standard

Airflow

Conditions

Standard

Airflow

Conditions

Mod III-B Only

Actual Engine Cycle Combustor Inlet Pressures

PCNHR, %

21

28

32

46

58

70

77

P3

MPa

0.103

0.105

0.119

0.144

0.187

0.248

0.428

(psia)

(15.0)
(15.2)
(17.2)

(20.9)

(27.1)

(36.0)

(62.0)
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pilot combustion gas stream. This strong flow appeared to quench a consider-

able amount of the pilot combustion gases as they passed downstream beyond the

centerbody trailing edge. This sudden quenching appeared to be responsible

for the difficulty in obtaining full pilot stage propagation and main stage

ignition. Combustion gases passing through the crossfire tubes into the main

stage annulus become entrained in this flow along the centerbody, and were

swept downstream before penetrating sufficiently into the main stage annulus

to provide a good ignition source. The existence of this strong flow of air

appeared related to three of the hardware modifications featured in the Mod

IIA combustor configuration: the shortening of the centerbody, the introduc-

tion of inner line Panel 2 dilution, and the increased centerbody main side

cooling flow (see Figure 193). Because of the quantity of the inner liner

Panel 2 dilution (~5.1% Wcomb) , it was suspected that this had the strongest

impact of the three.

Test results for the Mod lib combustor configuration are presented in

Appendix F. In comparison to the Mod IIA configuration, no significant

improvement in the pilot stage ignition was obtained. Some improvement in

the main stage full propagation and lean extinction characteristics was dem-

onstrated, especially at the lower speed operating conditions.

Test results obtained for the Mod IliA combustor configuration are pre-

sented in Appendix F. The implementation of the combustor hardware modifica-

tions featured in this configuration proved very effective in achieving sig-

nificant improvement in the main stage ignition characteristics. Successful

ignition and full propagation of the main stage was obtained at simulated cor-

rected core speeds as low as 32%. A partial propagation was obtained at 28%

PCNHR. This ignition data was adjusted to true engine cycle combustor inlet

pressure conditions using pressure effect characteristics determined from sec-

tor subcomponent and Mod I development combustor ignition testing at pressure.

As shown in Figure 195, when adjusted for the combustor inlet pressure, the

Mod Ilia combustor configuration was estimated to achieve full main stage

propagation within the ground start fuel schedule at corrected core speeds at

or above 45%. During testing of this configuration, several observations were

made. At the lower simulated core speed operating points, hot combustion gases

passing through the cross fire tubes were still being swept downstream upon

334



/

/

0

E-_

0

._-I

_0

0

-,-I

0

I-4

_4

.,-I

P_

0

eq
0

OT_ _ _IY-Ian_ _o_snqmoD II_a^O

o

335



discharging into the main stage annulus. Main stage ignition and initial flame

stabilization appeared to occur in the plane of the main stage liner primary

air introduction. As the fuel-air mixture in the main stage leaned out, the

flame front propagated upstream into the recirculating zone established by the

swirl cup. At test conditions where main stage ignition occurred, the main

dome swirl cup equivalence ratios were around 3.0, above the rich stability

limit. At the plane of the liner primary dilution, the equivalence ratios

were near 1.0, considered ideal for ignition. It appeared that a substantial

improvement in the main stage ignition characteristics could be obtained by

reducing the equivalence in the main stage dome, and moving the cross fire

tubes (ignition source) closer to the main stage swirl cup. Because of the

design of the centerbody, moving the cross fire tubes upstream any significant

amount was not possible.

Test results obtained for the Mod IIIB combustor configuration was pre-

sented in Appendix F. From these results it can be concluded that in general,

the hardware modification incorporated into this configuration produced no

significant change in the ignition and lean extinction characteristics of the

Mod Ilia combustor configuration. However, one significant result did emerge.

Substantial improvements were achieved in both the pilot and main stage igni-

tion and lean excitation characteristics at test points where the effect of

increased combustor airflow was evaluated. This result may be associated with

better fuel atomization and fuel-air mixing created from higher swirl cup air-

flows and pressure drops offsetting the adverse effects of higher dome veloc-

ities. Estimated main stage ignition performance at actual engine combustor

inlet pressure is presented for the standard and high flow operating condi-

tions in Figure 196. These results indicate that without compressor bleed

during ground start up, the main stage could be successfully crossfired at

corrected core engine speeds below 40%.

7.5.2 Concludin$ Remarks

In summary, the development effort represented in this ignition testing

series evolved a promising combustor configuration capable of demonstrating

satisfactory pilot and main stage ignition and lean extinction characteristics

33:3



ORIGINAL ...._

OF poOR Q_-"_'"_ _

0.07

0
-r-,I

0.06

<
I

O
_J

O

0.05

r-q

>
O

0.04

_. _ _ _/------Standard Airflow

\
Y%___" , _ _¢-------E3 9/79 Start Cycle

15% Increased Airflow__

30% Increased Airflow_"_ _'____!

I0 30 50 70

Corrected Speed (Simulated), percent

90

Figure 196. Mod III-B Atmospheric Ignition Test Results.

3 3 '7



that would meet the E 3 (9/79) ground start cycle requirements. It was fur-

ther demonstrated that additional improvements in the combustor ignition and

lean extinction characteristics would result if the requirement for large

amounts of compressor bleed during ground start up were eliminated.

Despite these encouraging results, it was decided to apply additional

development effort into the rich main stage design concept to achieve further

improvements in ground start ignition characteristics, while demonstrating

acceptable exit temperature performance. Modifications in the outer liner and

inner liner trim dilution were considered to investigate their impact on these

two combustor operating performance characteristics.

7.6 MOD IV AND MOD V DEVELOPMENT COMBUSTOR TEST RESULTS

The Mod IV combustor configuration hardware modifications involved

reducing the inner liner panel trim dilution holes while introducing holes in

inner liner Panel 2. The dilution hole arrangement in Panel 2 inner was the

same pattern featured in the Mod IIA combustor, but the holes were smaller.

With this arrangement, the Panel 2 and Panel 3 dilution holes were staggered

providing for the introduction of dilution air every 3 ° around the combustor

inner annulus. These dilution modifications had two intentions, to add mix-

ing length by introducing some of the inner liner trim dilution air further

upstream and to investigate the impact of a small quantity of Panel 2 dilution

on the main stage ignition.

The Mod V combustor configuration hardware modifications involved reduc-

ing the size of the main stage inner side and centerbody side primary dilution

thimble holes. In addition, 60 equally spaced dilution holes were introduced

into Panel 2 of the outer liner. The holes were staggered with respect to the

outer liner Panel 3 dilution hole arrangement. These modifications were

intended to further enrich the main stage dome to improve the ignition charac-

teristics and attenuate the exit gas temperature profiles, especially in the

pilot only mode of operation. Illustrations of the combustor hardware modifi-

cations featured in each configuration are presented in Figures 197 and 198.

The resultant changes in the combustor airflow distribution for each of these

configurations are presented in Appendix E.
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7.6.1 Atmospheric Ground Start Ignition Test

Ground start ignition testing was performed on both the Mod IV and Mod V

development combustor configurations. The test points investigated were the

same as those investigated with the Mod II and Mod III configurations.

For this ground start ignition test series, the E 3 test rig fuel nozzle

assemblies were used. Nozzle tips rated at 12 kg/hr (26.5 pph) at I00 psid

were installed in both combustor stages.

Grou_d start ignition test results for the Mod IV combustor configuration

are compared with the results obtained from the Mod IliA configuration in

Figure 199. A tabulation of the data is presented in Appendix F. The Mod

Ilia configuration had demonstrated marginally acceptable main stage subidle

ignition characteristics. As observed from this figure, the pilot stage full

propagation and one-cup-out characteristics remained unchanged. This was

expected as there were no hardware modifications made to the pilot stage dome.

However, some deterioration in main stage full propagation and one-cup-out

characteristics did result. Overall combustor fuel-air ratios approximately

10% greater than in the Mod Ilia configuration were required to obtain full

propagation of the main stage. Some reduction in the lean stability margin

was also observed. Despite the fact that some deterioration in the main stage

ignition characteristics did occur, the Mod IV results indicated that small

amounts of inner liner Panel 2 dilution did not seriously impact main stage

ignition.

Ground start ignition test results for the Mod V combustor configuration

are presented as a comparison with the results of the Mod IliA and Mod IV

ignition test results in Figure 200. As observed from the figure, some minor

improvements in main stage ignition characteristics over those demonstrated

with the Mod IV configuration were obtained. However, the main stage ignition

performance is not quite as good as that demonstrated with the Mod IliA con-

figuration. From these results and estimates of the expected improvements

resulting from operation at actual engine cycle combustor inlet pressures, it

is estimated that full propagation of the main stage could be achieved at a

corrected core engine speed of 50%. This compares to a speed of 45% identified
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for core engine starting. Despite the introduction of some outer liner Panel 2

dilution, the pilot stage ignition characteristics remained unchanged.

7.6.2 Atmospheric Exit Temperature Performance Test

The Mod V development combustor configuration was evaluated for exit tem-

perature performance. Operating conditions simulated sea level takeoff power

with pilot-to-total fuel splits of 0.5, 0.4, and 0.3. Data were also taken

at operating conditions simulating 77%, 58%, and 46% corrected core engine

speeds as defined in the E 3 (9/79) ground start cycle. Pilot-to-total fuel

splits of 1.0, 0.5, and 0.4 were evaluated at 77 PCNHR, while the pilot only

operating mode was evaluated at 58 and 57 PCNHR. At subidle test points, fuel-

air ratios 30% lower than cycle conditions were set because of fuel nozzle

flow limitations. Test points and corresponding combustor operating condi-

tions are presented in Table XLIII.

Nozzle tips rated at 2.3 kg/hr (5 pph) were installed in the pilot stage.

In the main stage, a set of slightly modified nozzle tips were used. These

tips originally were rated at 3.2 kg/hr (7 pph). The modifications increased

their flow rate to approximately 6.8 kg/hr (15 pph) at the same fuel pressure.

Some variance in fuel flow levels (+10%) between these 30 modified nozzle tips

was evident from the pretest fuel flow calibration. The variation was attrib-

uted to the fact that the modifications were done manually.

Combustor exit gas temperature rakes were positioned with the center ele-

ment located outward approximately 0.20 cm (0.08 in.) from the center of the

exit annulus, and approximately 0.53 cm (0.21 in.) aft of the trailing edge of

the test rig aft seals. This "cold" position was selected as a result of an

investigation conducted by ACL Test Engineering into the interference prob-

lems experienced with the E 3 traverse ring. During the performance testing,

the only problem encountered with the traverse system involved the extreme

elements of each rake occasionally moving out of the combustion gas stream

into the film cooling flow behind the test rig aft seals. This was the result

of an eccentricity between the combustor exit annulus and the traverse ring,

plus the fact that the rakes were positioned downstream of trailing edge of

the aft seals. However, none of the thermocouple elements suffered damage

from rubbing against the surface of the aft seals.
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Results from the performance test of the Mod V combustor configuration

are presented in Figure 201. The average profile at the 50/50 fuel split is

generally within the established limit and reasonably flat. However, as fuel

is biased to the main stage, unacceptable profiles result. The maximum pro-

files are sharply peaked inward and exceed the established limit by a consid-

erable amount. Much of the data obtained from the Mod V performance test suf-

fered from the effects of cold spots caused by blownout swirl cups, bad data

from deteriorating thermocouple elements, and the effects of the extreme ele-

ments of the rakes measuring the temperature of the inner and outer aft seal

film cooling air. These areas were clearly identified through use of combus-

tor exit gas temperature contour plots generated from all of the data obtained.

They represented discrete problem areas in the combustor and traverse system

and were unrelated to any problem with the areo design of the combustor hard-

ware. Test data obtained in these regions was not considered as representa-

tive of the combustor performance. All of the performance data obtained was

refined to eliminate the effects of these problem areas. In Figure 202 the

performance results for pilot only operation at the simulated subidle condi-

tions are presented. Data obtained at the simulated 77 PCNHR condition with

the pilot-to-total fuel splits of 0.5 and 0.4 was of extremely poor quality

and not considered worth processing.

It can be seen in Figure 202 that maximum profiles of less than 1.0 were

obtained at all of the pilot-only subidle operating conditions investigated.

These levels are significantly lower than levels measured during performance

testing of the Mod I configuration at the same operating conditions. This

improvement is attributed to the outer liner Panel 2 dilution featured in the

Mod V configuration. The significance of this result relates to the concern

over the effects on turbine hardware survival when subjected to sharply peaked

temperature profiles resulting from pilot only operation. Any attenuation in

these profiles would be very beneficial to turbine life.

7.6.3 Concludin$ Remarks

The combustor hardware modifications featured in the Mod IV and Mod V

configurations failed to provide any improvement in the ground start igni-

tion characteristics. However, the results did show that small amounts of
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inner liner Panel 2 dilution could be incorporated into the design without

significantly affecting the main stage ignition characteristics.

Exit temperature performance results obtained from the Mod V configura-

tion revealed excessively high pattern factor levels. This despite the large

quantities of trim dilution air featured in this rich main stage combustor

design. Such results suggest that the short length of the E 3 combustor does

not provide sufficient length in which to effectively mix large quantities of

trim dilution with the combustion gases. A more uniformly mixed combustor

could be achieved by introducing most of the combustor air in the primary

zones. Here the air and fuel are subjected to intense mixing phenomena and

have greater physical length in which to further mix before discharging from

the combustor. This design philosophy is supported by making a comparison of

the Mod I and Mod V development combustors. In the Mod I combustor, 80% of

the combustor air was introduced into the primary zone, while only 5% of the

air was introduced as trim dilution. This configuration demonstrated accept-

able exit temperature performance levels. In the Mod V combustor, only 64%

of the combustor air was introduced into the primary zones, with 21% of the

air introduced as trim dilution. This configuration demonstrated poor exit

temperature performance levels.

From testing performed on the Mods II, III, IV, and V combustor configu-

rations, design changes involving significant reductions in the main stage

primary zone airflow were necessary to evolve the desired main stage ignition

characteristics. The large quantities in trim dilution featured in these

designs were necessary to compensate for the reduced dome flows in order to

maintain the combustor overall total pressure drop. All of this suggests

that it will be extremely difficult to evolve a rich main stage design of this

short length combustor that will demonstrate the desired main stage ignition

characteristics as well as exit temperature performance levels within the E 3

goals. Considerably more development effort will be necessary to resolve this

problem.

7.7 MOD VI AND MOD VII DEVELOPMENT COMBUSTOR TEST RESULTS

The Mod VI and VII combustor configurations featured hardware modifica-

tions intended to revert the combustor design from the rich main stage dome

349



designs featured in configurations Mod II through Mod V, back to the original

lean main stage design concept.

The decision to revert back to the original design intent was based on

the results of an updated starting study of the E 3 engine system conducted

by Systems Engineering. In this study, measured performance data from the

major engine components was incorporated into the E 3 dynamic start model.

Based on this component test data, the measured performance of the compressor

and high pressure turbine components was considerably better in the low-speed

operating range than had originally been projected. Therefore, it would be

possible to start the engine within the specified time requirements with a

considerably lower T 4 level, significantly reducing the risk of overtem-

peraturing the turbine from the high levels of combustor exit temperature

pattern factor associated with the pilot only mode of operation.

All of the hardware modifications required to revert back to the original

design intent were identified by tracing the development history of the com-

bustor. The combustor hardware modifications featured in the Mod VI configu-

ration are provided below:

• Open all holes currently welded closed in the outer dome outer cool-

ing ring and the outer liner cooling Ring No. I.

• Open all holes in the outer dome inner cooling ring that are in line

with the two crossfire tubes.

• Close off all outer liner Panel 2 dilution holes.

• Reduce the size of all outer liner Panel 3 dilution holes.

Return the main stage swirl cup primary swirlers to standard con-

figuration by removing the Nichrome patches used in the Mod V com-

bustor to block off every other vane passage. Also, replace the

main stage secondary swirlers with larger size swirlers, originally

used in the Baseline combustor main stage.

Restore the main stage splashplate cooling to standard level by open-

ing all holes closed off in the Mod V combustor.

Reopen all holes closed in the inner dome outer cooling ring.

Reduce the size of all inner liner Panel 3 dilution holes.
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It would have been preferred to incorporate even larger secondary swirlers in

the main stage. However, this would have required machining another set of

castings leaving an insufficient supply for the core engine combustor.

The Mod VII configuration, like the Mod VI configuration, featured a lean

main stage design. The combustor was completely disassembled and refurbished

to improve the hardware quality. New dome sleeves were installed in both the

pilot stage and main stage swirl cups. The new main stage sleeves featured a

shortened overall length with the same trailing edge diameter. In addition, a

small amount of inner liner Panel 3 trim dilution was moved upstream into Panel

2. Estimates of airflow distribution of these configurations are presented in

Appendix E.

7.7.1 Atmospheric Ground Start lsnition Test

Ground start ignition evaluation of the E 3 development combustor Mod VI

configuration was conducted in the ACL Cell A3W facility on 6/25/81. The pur-

pose of this test was to evaluate the ignition, crossfire, and lean extinction

characteristics of this combustor configuration at selected steady-state oper-

ating points along the E 3 (6/81), ground start design cycle. For the purposes

of main stage crossfire, data was also obtained at simulated steady-state

operating conditions representing 4%, 6%, 10%, and 30% of sea level takeoff

power along the E 3 FPS II design operating cycle. Test points and corre-

sponding operating conditions are presented in Table XLIV.

Ground start ignition test results for the Mod VI combustor configura-

tion are presented in Figure 203. As observed, the pilot stage ignition

characteristics satisfy the fuel schedule requirements defined in the revised

(6/81) start cycle with and without compressor bleed. Taking into consider-

ation the improvement in ignition characteristics anticipated at actual cycle

inlet pressures, the pilot stage would demonstrate considerable ignition

margin along the revised start cycle. Also observed from this figure are the

main stage crossfire and lean extinction characteristics. Overall combustor

fuel-air ratios of 0.030 or higher were required to successfully crossfire and

fully propagate the main stage. These levels are well above the fuel schedule

in the 4% to 30% power range as defined in the FPS design cycle, and are typi-

cal of levels previously demonstrated by other configurations featuring lean
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Table XLIV. ModVl and VII Atmospheric Ignition Test Point Schedule.

• Subidle conditions from 6/81 start cycle
• Higher-power condition from FPS-II cycle
• Standard day
• Atmospheric inlet pressure
• 44.19 cm2 (in. 2) bleed)

P3,
Test Atm T3, W36
Point PCNHR (psia) K (°F) kg/s (pps) Comments

*I 21.0 1.00 304 2.19

(15.0) (87) (4.82)

*2 21.0 1.00 304 2.10

(15.0) (87) (4.61)

*3 24.5 1.00 310 2.59

(15.0) (98) (5.50)

*4 24.5 1.00 310 2.38

(15.0) (98) (5.24)

**5 30.0 1.00 322 2.86

(15.0) (120) (6.30)

**6 30.0 1.00 322 2.75

(15.0) (120) (6.00)

*7 36.9 1.00 339 3.20

(15.0) (150) (7.05)

*8 36.9 1.00 339 3.12

(15.0) (150) (6.87)

**9 4% F N 1.00 466 2.40

(15.0) (379) (5.29)

**i0 64.3 1.00 483 2.29

(15.0) (410) (5.03)

**ii 6% F N 1.00 495 2.44

(15.0) (432) (5.36)

*'12 10% F N 1.00 539 2.42

(15.0) (510) (5.33)

*'13 30% F N 1.00 637 2.25

(15.0) (687) (4.94)

Simulated No Bleed

Simulated Bleed

Simulated No Bleed

Simulated Bleed

Simulated No Bleed

Simulated Bleed

Simulated No Bleed

Simulated Bleed

FPS II Cycle

6/81 Cycle

FPS II Cycle

FPS II Cycle

FPS II Cycle

Note:

= Core engine motoring combustor inlet conditions (no fuel)

** = Ignition characteristics of main stage to be investigated

6/81

6/81

6/81

6181

6/81

6/81

6/81

6/81
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main stage dome designs (Baseline and Mod I configuration). As with the

pilot stage, a significant amount of improvement in the main stage crossfire

characteristics would be expected at actual engine cycle inlet pressures. How-

ever, it is doubted that the amount of improvement would be enough to achieve

full main stage propagation below 6% power. The main stage did demonstrate

sufficient blowout margin to assure that once fully propagated, it would

remain fully propagated at actual cycle operating conditions as low as 4%

power.

Since the combustor modifications featured in the Mod VII configuration

did not involve aerodynamic changes to the pilot stage, no change in the pilot

stage ground start ignition characteristics was anticipated. Some slight

change in the main stage ignition characteristics could be anticipated due to

the modifications. Because the pilot only operating mode was once again the

approach selected for engine ground start, it was felt that no new information

of any significance would be obtained by evaluating the Mod Vll combustor for

ground start i_nition characteristics. Thus, this configuration was not

tested for this purpose.

7.7.2 Atmospheric Exit Temperature Performance Test

Exit gas temperature performance testing of the E 3 double-annular dome

development combustor Mod VI configuration was conducted on 6/29/81 in the

ACL Cell A3W facility. The purpose of this test was to evaluate this lean

main stage dome design for exit gas temperature performance at operating con-

ditions simulating SLTO, 30% thrust, and 6% thrust along the E 3 FPS II design

cycle. At simulated SLTO operating conditions, performance data was obtained

at pilot to total fuel splits of 0.5, 0.4, and 0.3. At the simulated 30%

thrust and 4% thrust operating conditions, performance data was obtained in

the pilot only mode. All exit temperature rakes were positioned (cold) radi-

ally outward 0.127 cm (0.05 in.) from the exit annulus center, and approxi-

mately 0.508 cm (0.20 in.) aft of the trailing edge of the aft seals. Test

points and corresponding combustor operating conditions are presented in Table

XLV.
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E 3 test rig nozzle assemblies incorporating nozzle tips rated at 2.3

kg/hr (5 ppm) in the pilot stage, and nozzle tips rated at 6.4 kg/hr (14 pph)

in the main stage were used.

Much of the data obained from the Mod VI performance suffered from the

same problems as did data obtained on the Mod V configuration. All of the per-

formance data obtained was refined to eliminate the effects of these problem

areas.

The exit temperature performance results for the Mod VI configuration

were disappointing. As observed from Figure 204, a pattern factor of 0.36

was obtained at the simulated SLTO operating condition at a pilot-to-total

fuel split of 0.4. Even higher pattern factor levels were obtained at the

other fuel splits investigated at this operating condition. The pattern

factor goal established for this combustor development program is a level of

0.25. At a pilot-to-total fuel split of 0.5, the average profile is center

peaked, and generally within the design limit. However, at the 0.4 and 0.3

fuel splits the average profile is inner peaked, and exceeds the design limit

in the hub region by a considerable amount. Visual observations of the com-

bustor during testing revealed the existence of streaks in the flame pattern

at several positions around the circumference, verifying the poor performance

characteristics measured. The most notable streak appeared to originate in

the pilot stage in the vicinity of Cup 7. It was later discovered that an

undersized pilot stage primary dilution hole existed in the vicinity of this

swirl cup lending suspicion to it being the probable cause. Data obtained at

the 30% thrust and 6% thrust operating conditions in the pilot only mode are

presented in Figure 205. As observed from this figure, the profiles are

sharply outward peaked as expected. The pattern factor levels are higher

than had been anticipated with a level of 1.35 at simulated 30% thrust condi-

tions, and a level of 1.60 at simulated 6% thrust conditions.

The combustor was removed for a detailed hardware inspection. This

inspection revealed numerous hardware quality problems, many of which could

be directly linked to the poor performance levels measured. Some of these

problems are discussed below.

356



$ |

ORIGINAL PAGE _'
OF POOR Q_A,_'; y

b.0

I

o3

0 0 0 0 0

_.uo_._od ':_q_TOH o_essed _,TX_t ,xo%snqu_oD

o
n_

0
gl

0

0
0
C
o3

0

I-'-4

0
N

4
0

0

b_

357



_0

ORIGINAL PAGE 19

oF _O_R QUALITY

II

_"0 0 E Z
J-3 I

I a

0

• .

0
0

0 0 0 0

_uon_od '_q_ToH oNe_ed

o,I

r-_

4_
e-I

O0

o

%

[...,, _

• _ _
0

_4
o

o •

._.1

d
I

I

0 ,

3,'_B



Domes - Many of the emissions reduction sleeves were out-of-round or not

concentric to the primary venturi. In addition, many sleeves had nicks and

dents where they have been impacted during assembly. The emissions sleeves

in the main stage also appeared to be too long compared to the design intent.

Liners - Most of the dilution thimbles were cocked such that the coannular

gap was closed on one side. Many dilution holes had burrs on the hole trailing

edge.

Centerbody - The primary holes on the pilot side had burrs resulting from

the use of an installation tool. The primary holes on the main side had weld

beads protruding into the hole where an insert was added. The crossfire tubes

extended above the centerbody surface 0.051-0.152 cm (0.020-0.060 in.). As was

previously mentioned, it was also discovered that the outer liner primary dilu-

tion hole between Pilot Cups 7 and 8 was considerably undersized.

This particular set of combustor hardware had been subjected to six major

hardware modifications with many extensive design changes implemented. Because

of the hardware quality problems, the results from the exit gas temperature per-

formance test of this combustor configuration were not considered representa-

tive of the design. The combustor hardware was reworked to improve the qual-

ity. It was then retested for exit temperature performance as the Mod VII com-

bustor configuration.

Performance testing of the Mod Vll configuration was conducted on 8/21/81.

New simplex fuel nozzles rated at 6.4 kg/hr (14 pph) were used in both the

pilot stage and main stage. Exit temperature performance evaluation of this

combustor was conducted at simulated sea level takeoff operating conditions

with pilot-to-total fuel splits of 0.5, 0.4, and 0.3. Data was also taken at

operating conditions simulating 30% thrust at pilot-to-total fuel splits of

1.0, 0.5, and 0.4, and at simulated 4% ground idle at pilot-to-total fuel

splits of 1.0 and 0.5. Test points and corresponding combustor operating

conditions are presented in Table XLVI.

At the simulated SLTO operating conditions, overall combustor fuel-air

ratios approximately 10% above design levels were established. At the simu-

lated lower power operating conditions with staged combustion, an overall
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combustor fuel-air ratio of 0.024 was established. This compared to the design

level of 0.014 at the 30% approach power condition and 0.0125 at the 4% ground

idle condition. The higher fuel-air ratios were necessary to achieve and main-

tain main stage propagation at atmospheric operating conditions. All four

thermocouple rakes were positioned radially outward 0.04 inch from the exit.

annulus center and 0.533 cm (0.21 in.) aft of the trailing edge of the aft

seals.

Despite operating the combustor at higher fuel-air ratios, it was observed

that several main stage cups failed to light at the simulated SLTO and 30%

approach operating conditions. The problem was considerable at the simulated

4% ground idle operating condition where approximately half of the main stage

cups failed to light. Throughout the development testing effort, this had been

a recurring problem related to the main stage swirl cup dome design as opposed

to a problem with the type of fuel nozzles used. Problems were also encoun-

tered with the traverse system. The inner most element of two rakes traversed

out of the gas stream in a section of the combustor from 220°-270 ° CW ALF for

one rake and 270°-300 ° CW ALF for the other rake. This also was a recurring

problem related to the degree of eccentricity and out-of-roundness of the test

rig and traverse ring hardware. Cost and time considerations prohibited

obtaining a proper solution to the latter problem.

The exit temperature traverse data obtained required refinement to elimi-

nate the effects of these problem areas. Average and peak profiles determined

at the simulated sea level takeoff operating conditions are presented in Eig-

ure 206. As observed from this figure, the design average profile was closely

approached at a 50/50 fuel split. The minimum peak profile occurred at a 40/60

fuel split with a pattern factor of 0.275. This compared to a minimum pattern

factor of 0.36 obtained for the Mod VI configuration demonstrating the degree

of improvement achieved by better quality. Despite the improvement, the pat-

tern factor still exceeded the design goal of 0.250 by 10%. At the 40/60 fuel

split, the average profile had a center peaked characteristic slightly exceed-

ing the design limit at the hub. Average and peak profiles determined at the

simulated lower _ower operating conditions are presented in Figure 207. It is

observed from this figure that pattern factors of 1.25 would be expected from

operation of this combustor design in the pilot only mode. A pattern factor
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level of 1.50 had been previously demonstrated by the Baseline and Mod I com-

bustor configurations at similar operating conditions.

The hardware modifications and refurbishment incorporated into the Mod

VII combustor configuration produced significant reductions in pattern factor

when compared to results from the Mod VI configuration. Although the results

fell slightly short of the design goal, no further hardware modifications

intended to provide additional reductions in pattern factor were made.

Instead, it was decided to proceed to evaluate this development combustor con-

figuation at true cycle operating conditions for ground start ignition perform-

ance and low power emissions at true engine cycle operating conditions.

7.7.3 Emissions Testing

Ignition and emissions testing of the development combustor Mod VII con-

figuration was conducted on 9/15/81 in the AFL Cell A3E test facility. The

purpose of this test was to evaluate this combustor design for ground start

ignition, crossfire from pilot to main stage domes, and low power emissions

characteristics at true engine operating conditions for selected points along

the revised (6/81) E 3 start cycle operating line and the E3 fPS design cycle

operating line. It had been intended to evaluate the combustor for emissions

at 30% F N approach power conditions at slightly derated operating conditions

with pilot-to-total fuel splits of 1.0, 0.4, and 0.3. This was required to

achieve the desired combustor fuel-air ratio in the pilot only mode of opera-

tion using the simplex fuel nozzles selected for use in the outer dome. How-

ever, because of problems with the facility operation it was necessary to fur-

ther derate the approach power test conditions to a maximum inlet total pres-

sure of 0.69 MPa (i00 psia) compared to the desired value of 0.90 MPa (130

psia). The engine cycle combustor inlet pressure at this operating condition

is 1.21MPa (175 psia). Test points and corresponding operating conditions

are presented in Table XLVII.

Simplex-type fuel nozzles rated at 12 kg/hr (26.5 pph) were used in both

the pilot and main stage domes. Because this test was conducted at low power

operating conditions, no combustor instrumentation was used.
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As anticipated, significant improvement in both the pilot stage ignition

and main stage crossfire characteristics was demonstrated at true cycle oper-

ating pressures as compared to previous atmospheric test results obtained with

the Mod VI configuration. As observed from Figure 208, the pilot stage igni-

tion satisfies the E 3 (6/81) start cycle fuel schedule with considerable

margin at corrected core speeds above 30%. However, it appears unlikely that

crossfire and full propagation of the main stage would be accomplished within

the start cycle fuel schedule at subidle operating conditions. The main stage

did demonstrate sufficient lean blowout margin to assure that once fully propa-

gated, the main stage would remain fully propagated at subidle operating con-

ditions.

The results of the idle emissions testing of the Mod VII combustor con-

figuration are presented in Figure 209. Measured emissions data obtained in

the vicinity of Swirl Cup No. 28 (324 ° CW ALF) showed signs of poor combustion,

yielding high levels of CO and HC emissions. A posttest inspection of the

fuel nozzles revealed the presence of leaks in both the pilot and main stage

nozzle tips that were located at Cup No. 28 position. The leaks appeared

related to deteriorated seal rings between the nozzle tips and the mounting

stems. Emissions data measured in this vicinity were factored out of the

results.

As observed from Figure 209, significant reductions in CO emissions were

achieved compared to levels previously demonstrated with the Mod I configura-

tion. At the 6% design idle operating condition, a CO level of 23.3 g/kg (23.3

ib/1000 ib) of fuel was obtained. This closely approached the program target

level of 20.7 g/kg (20.7 Ib/1000 ib) of fuel. A minimum level of 20 g/kg (20

Ib/1000 Ib) of fuel was achieved at slightly off-design combustor fuel-air

ratio of 0.0129, compared to the design cycle fuel-air ratio of 0.0116. Hydro-

carbon emissions were nearly identical to levels previously demonstrated with

the Mod I configuration. An HC emissions level of 4.5 g/kg (4.5 Ib/1000 ib)

of fuel was obtained at the 6% design idle operating condition. The program

target level at this operating condition is a level of 2.8 g/kg (2.8 Ib/1000

Ib) of fuel. HC levels at or below this target level were demonstrated at

6% ground idle operating conditions at overall fuel-air ratios greater than

0.015. CO and HC emissions data obtained at the derated approach power oper-

ating condition (30% FN) , were adjusted to correct for the low inlet total
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pressures. The results (presented in Table XLVIII) show that very low levels

of CO and HC emissions were demonstrated in the pilot only operating mode.

However, significantly higher levels resulted for the staged operating modes.

These results are similar to those previously obtained for the Baseline and

Mod I development combustor configurations evaluated at similar conditions.

As previously suggested, the reason for the high CO and HC emissions levels

is related to the low design cycle fuel-air ratio of 0.014 at this operating

condition which produces two very lean domes in the staged operating mode.

Table XLVIII. Mod VII Emissions Results

at Approach Power.

Emission Index

Combustor g/kg (Ib/lO00 ib) Fuel

Operatin$ Mode CO H C NOy

Pilot Only 2.9 0.4 10.7

(2.9) (0.4) (10.7)

40/60 Split 54.0 22.9 2.7

(54.0) (22.9) (2.7)

30/70 Split 56.0 40.7 2.2

(56.0) (40.7) (2.2)

NO x emission data obtained at the derated approach power operating con-

ditions were also adjusted to the correct operating conditions.

The results for the three pilot-to-total fuel splits are also presented

in Table XLVIII. As would be expected, the lean combustion conditions associ-

ated with fuel staging yields very low levels of NOx, while the pilot only

operating mode yields levels considerably higher. In Figure 210, the measured

NO X emission levels obtained in the staged operating mode are plotted against

the E 3 design cycle severity parameter. Also shown in this figure are meas-

ured data obtained from the Baseline and Mod I combustor configurations. It

is observed from this figure that the NO x emission characteristic of the
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Mod VII configuration appears to be very similar to the characteristics demon-

strated by the other configurations. Therefore, NO x emission levels at sea

level takeoff operating conditions similar to the other two configurations

would be anticipated. Both the Baseline and Mod I combustors demonstrated

NO x levels that satisfied the E 3 Program goal.

EPA parameter numbers, based on the EPA landing/takeoff cycle for CO, HC,

and NO x were generated for combustor operation at 6% ground idle and pilot-

to-total fuel splits of 1.0 and 0.35 at the approach power operating condition.

The results are presented in Table XLIX and are compared to the E 3 Program

goals for the three emissions categories. As observed from this table, the

NO X emission levels satisfy the program goal with pilot only or staging at

the approach power operating condition. However, both the CO and HC emissions

levels fail to meet the respective program goals with either operating mode.

With the pilot only operating mode, the CO emissions closely approach the goal,

while reductions greater than 30% are required for the HC emissions. Signifi-

cantly greater reductions in both CO and HC emissions are required to satisfy

the program target goals for staged combustor operation at approach.

Table XLIX. Mod VII EPAP Results.

ib-Emission/1000 ib Thrust-Hr-Cycle

E3

Pilot Only 35/65 Split Program

At Approach at Approach Goals

Carbon Monoxide

Hydrocarbons

Oxides of Nitrogen

3.27 6.40 3.00

0.58 2.48 0.40

2.96 2.51 3.00

7.7.4 Concluding Remarks

The Mod VII combustor configuration evolved from this test series repre-

sented the final E 3 development combustor design configuration. This con-

figuration succeeded in demonstrating excellent pilot stage ignition charac-

teristics, acceptable exit temperature performance, and emissions which meet
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NOx or closely approach COand HC, the combustor development program emissions
goals. Like earlier lean main stage designs evaluated in this development

program, the main stage ignition characteristics are not good enough to allow
staging at subidle operating conditions. However, this should pose no problem
in actual engine operation since modifications in the ground start operating

cycle permit tolerable starts to idle power with the pilot only staging mode.

Studies conducted on E3 swirl cup hardware have indicated the potential

to achieve improvement in the main stage ignition characteristics by adjusting

the secondary to primary swirler area ratio. Other studies conducted as part
of the E3 sector combustor subcomponenttesting have demonstrated a signifi-

cant impact of fuel nozzle design on emissions performance. Using fuel nozzles
with wider spray angles and better atomization (than obtained with the develop-
ment combustor fuel nozzles) produced significant reductions in COand HCemis-

sions at idle operating conditions. Thus, improvementsin swirl cup design and
in fuel nozzle design have the potential to provide improvementin the main

stage ignition characteristics, as well as reduce the COand HCemissions to
levels sufficient to satisfy the program goals.

7.8 ENGINE COMBUSTOR TEST RESULTS

The E 3 double-annular engine combustor design features a fuel rich pilot

stage and a fuel lean main stage with an airflow distribution similar to that

evolved in the slave Mod VII development combustor configuration. The engine

combustor features the same internal aerodynamic flowpath as the development

combustor. The hardware design used in the domes and centerbody assembly is

the same as that used in the development combustor. However, the liners are

a double-wall film plus impingement-cooled segment shingle design.

7.8.1 Atmospheric Ground Start Ignition Test

Ground start ignition evaluation of the E 3 core engine combustor was

conducted in the ACL Cell A3W facility on 10/28/81. The purpose of the test

was to evaluate the ignition, crossfire, and lean blowout characteristics of

this combustor design at selected steady-state operating points along the E 3

6/81 ground start cycle. For the purposes of main stage crossfire, data was
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also obtained at simulated steady-state conditions representing 4%, 6%, 10%,

and 30% of full rated thrust along the E 3 FPS operating line. Test point

and corresponding operating conditions are presented in Table L.

Fuel was supplied to the combustor using the E 3 test rig fuel nozzle

assemblies incorporating simlex nozzle tips rated at 12 kg/hr (26.5 pph) in

both the pilot and main stage. The ignition system was the standard GE23

ignition system used in all previous development combustor testing. The

igniter was located at 240* CW ALF, immersed flush with the inside shingle

wall of the pilot stage.

Test results from this ignition evaluation are presented in Figure 211.

From this figure it is observed that the core engine combustor pilot stage

ignition and lean blowout characteristics are considerably better than those

demonstrated with the Mod VII development combustor configuration. These

ignition and blowout characteristics will satisfy the E 3 ground start cycle

fuel schedule requirements with and without bleed. Even greater margin is

expected at actual cycle inlet pressures. The figure also shows that cross-

fire and full propagation (staging) of the core engine combustor main stage

required overall combustor fuel air ratios well above the fuel schedule

defined in the E 3 FPS steady-state operating cycle. This is typical of

past experience of development combustor configurations featuring lean main

stage dome designs. Improvements anticipated at actual cycle inlet pressures

would not be sufficient to permit staging at subidle or idle operating condi-

tions. The lean blowout characteristics for the main stage generally fall

below the FPS cycle fuel schedule. It is, therefore, possible to achieve

staged combustor operation at the low power operting conditions by initially

accelerating the engine to a power level where staging can be accomplished

within the cycle fuel schedule, then decelerating down to the desired power

operating condition.

As part of this test, a dynamic ignition evaluation was conducted on the

pilot and main stage. This was an attempt to determine the time required to

achieve ignition and full propagation while simulating the engine fuel sched-

uling as a function of core speed. The pilot stage was evaluated at the simu-

lated 30 PCNHR test condition. A constant fuel flow level of 157 kg/hr (345
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Table L. Engine Combustor Atmospheric Ignition Test Point Schedule.

P3, T3, W36,

Test Point PCNHR arm K (" F) kg/s (pps)

l(a) 21.0 1.00 303 2.19

(87) (4.82)

2(a) 21.0 1.00 303 2.10
(87) (4.61)

3(a) 24.5 1.00 310 2.50
(98) (5.50)

4(a) 24.5 1.00 310 2.38

(98) (5.24)

*5(a) 30.0 1.00 322 2.86
(120) (6.30)

*6(a) 30.0 1.00 322 2.75
(120) (6.06)

7(a) 36.9 1.00 339 3.20

(150) (7.05)

8(a) 36.9 1.00 339 3.12

(150) (6.87)

*9

*i0

Comments

Simulated No Bleed, 6/81

Simulated Bleed, 6/81

Simulated No Bleed, 6/81

Simulated Bleed, 6/81

Simulated No Bleed, 6/81

Simulated Bleed, 6/81

Simulated No Bleed, 6/81

Simulated Bleed, 6/81

4% Fn 1.00 466 2.40 FPS II Cycle

(379) (5.29)

64.3 1.00 483 2.29 6/81 Cycle

(410) (5.03)

*Ii 6% Fn 1.00 495 2.44 FPS II Cycle

(432) (5.36)

"12 10% Fn 1.00 539 2.42 FPS II Cycle

(510) (5.33)

"13 30% Fn 1.00 637 2.25 FPS ll Cycle
(687) (4.94)

NOTE:

(a)Core engine motoring combustor inlet conditions (no fuel)

*Ignition characteristics of main stage to be investigated

• Subidle Conditions from 6/81 Start Cycle

• Higher Power Condition from FPS-II Cycle

• Standard Day

• Atmospheric Inlet Pressure

• 44.2 cm 2 (6.85 in2)
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Dph) was preset in the pilot stage fuel system. The manifold, pigtails, and

nozzles were then purged of fuel to simulate a dry start. The igniter was

activated, and the pilot stage shutoff valve opened to introduce the surge of

fuel. A time of Ii seconds was required to achieve full propagation once the

valve was opened. The main stage was evaluated at the simulated 6% and 10%

power test conditions. The pilot stage was ignited and set to a fuel flow

level of 66 kg/hr (145 pph). Constant fuel flow levels of 168 kg/hr (370 pph)

and 145 kg/hr (320 pph) were respectively preset in the main stage at the 6%

and 10% power operating conditions. These were sufficient to achieve full

propagation as determined from the ignition data. The main stage system was

purged of fuel. The shutoff valve was opened sending the surge of fuel to

the main stage. This sudden surge caused a slight reduction in the pilot fuel

flow level, but did not cause any cups to blow out. At the simulated 6% power

operating condition, a time of I0 seconds were required to achieve full main

stage propagation. At the simulated 10% power operating condition, 15 seconds

were required to achieve full main stage propagation. This delay time of i0-

15 seconds could pose a problem during actual engine operation. During an

accel and staging maneuver, the majority of the total engine flow is diverted

to the main stage for crossfire, causing the pilot stage to lean considerably,

reducing the overall energy output of the combustor, possibly resulting in a

loss in engine speed. To minimize this crossfire delay time, the engine fuel

control system will be set so that the engire main stage fuel system is com-

pletely filled with fuel immediately before staging.

7.8.2 Atmospheric Exit Temperature Performance Test

Exit gas temperature performance testing of the engine combustor was con-

ducted in the ACL Cell A3W facility. The purpose of this testing was to evalu-

ate the combustor for pattern factor and average profile characteristics at

test conditions simulating sea level takeoff power, 30% approach power, and 6%

ground idle. Test points and corresponding operating conditions are presented

in Table LI.

Prior to this test, the thermocouple rakes were modified such that the

elements were spaced uniformly across the radial a_nulus. All four rakes were

positioned radially outward approximately 0.04 in. from the exit annulus center-

line to accommodate rig thermal growth during the tests. The element tips
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were axially positioned approximately 12.7 cm (0.50 in.) from the trailing

edge of outer liner Panel 3 shingle row, to be in the same plane as the lead-

ing edge of the turbine nozzle vanes.

Exit gas temperature performance of the core engine combustor was initi-

ated on 11/5/81. For this test run, simplex nozzle tips rated at 6.4 kg/hr

(14 pph) were installed in both the pilot and main stage. Visual observations

at the combustor exit revealed that several cups were extinguished in the

pilot and main stage domes in the top half of the annulus at simulated sea

level takeoff operating conditions. Several attempts at varying fuel splits

to the pilot and main stages to achieve cup ignition were unsuccessful. Vari-

ations in inlet temperature and airflow were also investigated and found to

influence the combustion performance of cups in question. If the inlet tem-

perature was lowered to 589 K (600 ° F), then all cups would burn. If the air-

flow and fuel flow were increased by approximately 20%, all cups would burn at

the high inlet temperature associated with the sea level takeoff operating

condition. Unfortunately, during the investigation period, many of the rake

thermocouple elements were lost so no meaningful exit temperature data was

obtained.

It was concluded that the problem was related to fuel vaporization within

the fuel manifold and nozzle assemblies. Using the fuel nozzle tips selected

for the performance testing, the low fuel flows specified at some of the test

points resulted in low system fuel pressures. This was especially true in the

pilot system where measured fuel pressures were below 0.07 MPa (i0 psi) at some

test points. These low pressures coupled with the high operating temperatures

in the test rig could have caused a vaporization problem with the Jet A fuel

used.

Performance testing was resumed on 11/10/81. No changes in fuel nozzle

or combustor hardware were made. Insulating material was wrapped around the

Dilot and main stage fuel manifolds, and around the fuel pigtails to help

shelter the fuel system from exposure to thermal radiation from the hot test

rig. Despite the application of the insulation, the same nonburning cup

problems were encountered as in the previous test. It was also visually
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observed that several pilot stage swirl cups had very low fuel flow as evi-

denced by weak flames. The performance test was terminated, and a posttest

calibration of the pilot and main stage nozzle tips was conducted. The

results of this calibration identified five pilot stages and one main stage

nozzle tip which had evidence of flow restrictions, confirming the observa-

tions. The restrictions were believed to result from fuel coking within the

nozzle body and directly linked to the fuel vaporization problem.

Performance testing of the core engine combustor was continued on 11/19/81.

For this test run, fuel nozzle tips in the pilot stage were replaced with

higher pressure drop simplex tips. This change was made to increase manifold

pressure, eliminating the fuel vaporation and coking problem experienced in

the previous two test runs, and to provide improved fuel atomization in the

pilot stage to better simulate actual engine oeprations. The coked-up nozzle

tip in the main stage was replaced with another of that type. The higher-pres-

sure nozzle tips were not used in the main stage because the maximum fuel flow

rate obtainable with these nozzles and facility pump capacity is lower than

flow levels specified for the main stage at several of the test points. With

this nozzle change, the fuel vaporization problem was eliminated, and good

exit gas temperature data was obtained.

Exit temperature performance results for the E3 core engine combustor at

sea level takeoff operating conditions are presented in Figures 212-214. As

observed from these figures, a pattern factor of 0.24 was demonstrated at a

40/60 pilot-to-main stage fuel split. This satisfied the E3 combustor

development program target goal of 0.25. The maximum profile is relatively

flat indicating an acceptable stoichiometric balance between the pilot and

main stage at this fuel split. Pattern factors considerably above the target

goal were demonstrated at pilot-to-main stage fuel splits of 50/50 and 30/70.

The average profile demonstrated at the 50/50 fuel split is generally

within the design limit and has an outboard peaked characteristic. At the

40/60 fuel split, the average profile is center peaked with a profile factor

of 0.ii which is within the design limit of 0.125. However, the average pro-

file slightly exceeds the design limit from 30% to 50% of the exit annulus

height. Exit temperature traverse data in the form of isothermal contours is
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presented in Figure 215 for the 40/60 pilot to main stage fuel split at simu-

lated sea level takeoff operating conditions.

Average and peak temperature profiles demonstrated at the simulated lower

power operating conditions are presented in Figure 216. In the pilot only

mode, the combustor demonstrated a pattern factor of 1.23 at the approach

power condition and 1.36 at the ground idle condition, 6% of sea level take-

off thrust. As expected, the profiles are sharply outward peaked, and are

similar to those demonstrated with the Mod VII development combustor configu-

ration at the same operating conditions. Considerably lower pattern factors

were demonstrated in the staged operating mode, illustrating the exit tempera-

ture performance advantages of this operating mode. However, as determined

from the ground start ignition test results of this combustor, staged oper-

ation at idle or subidle conditions may not be possible.

7.8.3 Emissions Test

Emissions testing of the engine combustor was conducted from 2/1/82

through 2/9/82 in the Aero Component Lab (ACL) Cell A3E Testing Facility. As

part of this test, the engine combustor was evaluated for ground start igni-

tion, lean extinction, and staging characteristics at true operating conditions

for selected points along the revised (6/81) E3 ground start operating line

and the E3 FPS design cycle operating line. In addition, this combustor

design was evaluated for pressure drop performance, and metal temperature char-

acteristics at selected points from 4% ground idle to simulated sea level take-

off along the E3 FPS design cycle operating line. Additional testing was con-

ducted for the purpose of obtaining a comparison of the CO and HC emissions at

ground idle operating conditions obtained between prototype (peanut) fuel noz-

zles and the standard test rig simplex fuel nozzles. Test points and corre-

sponding operating conditions are presented in Table LII.

Prior to this testing series, several combustor hardware modifications

were made to provide increased cooling fiow for the centerbody structure.

The decision to incorporate these changes into the hardware was based upon

visual observations of the combustor made during the open-ended exit tempera-

ture performance test. From these observations it was felt that excessively
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Table LII. Engine Combustor Emissions Test Point Schedule.

ORIGINAL PAGE !_
OF POOR QUALITY

P6, WBlad e WBlad e Wglad e Wf

Test Operating T3, PJ'a, W3, Outer, Inner, Predi f, Wc Overal 1 Total, Pilot/ Wf Pilot, Wf Main, Samplin 8

Point Condition g (" F] (p$ig) kg/s (ppa) kg/s (pps) kg/s (ppl) kg/s (pps) kg/a (pps) f/a kg/hr tpph) Total kg/hr (pph) kg/s (pph) Mode

1 21PCNHR 304 0.112 2.36 0 0 0 2.36 ig.itlon

(87) 16.2) (5.2) (5.2)

2 26.5 PCNRI 309 O.117 2.82 0 0 0 2.82 Ignition

(96) 16.9) (6.2)

3 30 PCNliR 322 0.125 3,45 0 0 0 3,&5 Ignition

(120) (18.1) (?.6) (7.6)

9 17 PCNHR 351 0.161 3,70 0 0 0 3.70 ignition

(172) (23.3) (8.2) (8.2)

5 4_ Fn 46b 0.346 8.18 O 0 0 8.18 Ignition

(379) (50.2) (18.0) (18.0)

6 6% Pn 692 0.436 0.41 0 0 0 10.41 Ignition

(426) (53.3) 23.0) (23.0)

7 10% Fn 533 0.596 4.09 0 O 0 14.O9 Ignition

(499) (86.4) (31.I) (31.I)

8 30Z F n 640 1.213 25.90 0 D [i 25.90 Ignition

(692) 175.9) (57.1) (57.1)

9 4% F n 466 0.346 9.86 0.56 0.52 0.60 g.18 0.0090 265 I.O 2b5 O G, i

(379) (50.2) (21.7) 1.24) (1.15) (I.31} (12.0) (503) (503)

I0 4% F n 466 0.346 9.86 0.56 0.52 0.60 8.1g 0.0[IO 324 1.0 324 0 G

(379) I(50.2) _(21.7) (1.24) (I.I_) (1.31) (12.0) ('13) (713)

11 6% F n 466 0.366 9.86 0.56 0._2 0_bO 8,18 0.0127 t75 I.U 375 O G, S

(379) (50.2) (21.?) (1.24) (1.15) (l.3l) (12.0) (526) (826)

12 4% P n 466 0.346 9.86 0.56 0_52 O.bO 8.10 O.0150 464 1.0 444 0 IG

(379) (50.2) (21.7) (1.24) (1.15) (1,31) (12.0) {916) (976)

13 4Z Pn 466 0.346 9.86 0.56 0.52 O.hO 8.18 O.O200 591 1.0 591 0

(379) (50.2) (21.7) (I.24) (I.]52 II.31) 112.0) (1300) (1300)

l& 6% F n 492 0,436 12.50 0.72 0.66 O.71 10.41 0.00_U JOU I.U 300 0

(426) (63.2) (27.5) (1.58) (1.45) (1.51) (22.9) (660) (660)

15 6I F n 492 0.436 12.50 0,72 0 66 0.?1 lO,ql O.0100 3?5 l,O 375 O

(626) (63,2) (27.5) (I.58) (1,45) (1,57) (22.9) (824) (824)

16 6% F n 492 0,436 2,50 O,72 0.66 O.?1 10.41 O.Ullb 434 1.0 434 O 3, S

(426) (63.2) (27.5) (1.58) (1.45) (I.57) (22.9) (755) (755)

17 6Z F n 492 0,436 12.50 0.72 0.66 0.71 10.41 0,U130 486 1.0 486 0

(426) (63.2) (27.5) (t.58) (1.45) (I.57) (22.9) (1070) (IO70)

18 6g Yn 692 0,436 12,50 0.72 0.66 0.71 10.41 0.0160 599 l.O 599 O G

(426) (63.2) (27.5) (1.58) (1.45) (1.57} (22.9) (1317) (1317)

19 30% g n 640 1.213 31.54 1,8l 1.66 1,80 26.27 0.O160 1328 1.0 1328 O _, S

(092) (t76.0) (69.4) (3.98) (3,66) (3.96) '(57.8) (2921) (2921)

20 30Z Fn 640 1,213 31.54 1.81 1.66 1.80 26.27 0.0140 1328 0.5 664 666 G
(692) (176,O) (69.4) (3.98) (3,66) (3.96) 57.8) (2921) (14b0) (L660)

21 30% F n 640 1.213 31.54 1.81 1,66 1.80 26.27 0.0140 1328 0.4 531 797 G, S
(692) (176.0) (69.4) (3,98) (3.66) (3.96) (57.8) (2921) (1168) (1700)

22 3OZ F n 640 1.213 31.54 1.81 1,66 1.80 26.27 O.Ol40 1328 0.3 398 930 G

(692) (176.0) (69.6) (3.98) (3.66) (3,96) (57.8) (2921) (876) (2045)

23 50Z F n 705 1.055 40.50 2.32 2.14 2.58 33.45 0.0178 244 0.4 858 1266 G

(809) (261.0) (89.1) (5.1t) (4.70) (5.67) (73.6) (4716) (1807) (2029)

24 70% F n 755 1.655 38.64 2.22 2.04 2.46 31.91 0.0208 2389 0,4 956 1453 G

(900) (240.O) (85.0) (4.88) (4.49) (5.41) (70.2) (5256) (2103) (3153)

25 %St F n 785 1.695 37,45 2.15 1.98 2.38 30.95 O.O221 2464 0.5 1232 1232 G

(954) (240.0) (82.4) (4.73) (4,35) (5,24) (68.1) (b420) (2710) (2?10)

26 85Z F n 785 1.695 37.45 2.15 1.98 2.38 30.95 0.0221 2464 0.4 985 1478 G,

(954) 240.0) (82.4) (4.73) (4,35) (5.24) (68.1) (6420) (2168) (3352)

27 85% Fn 785 1.695 37.45 2.15 1.98 2.38 30.95 0.0221 2466 0.3 739 1725 G
(954) (240.0) (82.4) (4.73) (4,35) (5.24) (68.1) (6420) (1626) (3794)

28 90_ Fn 802 1.655 37.09 2.13 1.96 2.36 30.63 0,0238 2625 0.4 1050 1575 G

(984) (240.0) i(81,6) (4.68) (4.31) (5,19) (67.4) (5775) (2310) (3465)

29 100_ F n 817 1.655 !36.36 2.09 1.92 2.31 30.05 0,0242 2618 0.5 1309 1309 G

(IO11) (240.0) 80.0) (4.59) (4.22) (5,09) (46.1) (5760) (2880) (2880)

30 IOOX F n 817 1,655 36.36 2.09 1.92 2.31 30.05 0.0242 2618 0.4 L047 [571 G,
(1011) (240,O) (80.0) (4.59) (4.22) (5.09) (46.I) (5760) (2304) (2456)

31 100_ F n 817 1,655 36,36 2.09 1,92 2.31 30.05 0.0242 2616 0.3 765 1833 G

(IO11) (240.0) (80.0) (4,59) (4.22) (5.09) (46.1) (5760) (122g) (4032)

G - Ganged SmapIing Mode

I - Individual Rake Sampling Mode

S - Smoke Data to Be Obtained

386



high centerbody temperatures would occur in-line with swirl cups at true

operating conditons with the cooling provided. The hardware changesmade

involved preferentially increasing the pilot domeinner cooling ring flow,
and the main domeouter cooling ring flow in-line with the swirl cups. In

addition, a circular arc of gill-type cooling holes was incorporated into the
pilot stage side of the centerbody structure just downstreamof the two cross-

fire tubes. These hardware changes are illustrated in Figure 217.

For the ignition and primary emissions test, fuel was supplied to the

combustor using the E3 engine fuel nozzle assemblies. This represented the

first time that these nozzle assemblies were used. The nozzles were pro-
grammedaround the combustor to provide the most uniform fuel distribution in

the pilot domefor the purpose of demonstrating low idle emissions levels.

For the idle emissions comparison testing, the engine fuel nozzle assem-

blies were removedfrom the rig and replaced with the E3 test rig fuel noz-

zle assemblies. The combustor test rig was configured to feature a 12-cup con-
tinuous section of prototype (peanut) nozzles, and an 18-cup continuous sec-

tion of standard test rig nozzles in the pilot stage dome. Both the peanut

and standard nozzles used were rated at approximately 12 kg/hr (26 pph). An

illustration of these two nozzle tip designs is presented in Figure 218.

Combustor instrumentation consisted of 28 static pressures, 2 total pres-
sures, and 65 grounded and capped chromel-alumel thermocouples. Of these

thermocouples, 19 were embeddedinto the surface of the centerbody structure

at several places around the circumference. This instrumentation provided
important performance data concerning combustor pressure drops, airflow dis-
tribution, and metal temperatures. The locations of this instrumentation on

the combustor hardware are illustrated in Figures 219 through 229. All sam-

piing rake thermocouples plus numerousother combustor skin thermocouples were

connected to a temperature display device (Metrascope) for continuous monitor-

ing. A dynamic pressure probe was installed through an available test rig

port and immersedinto the combustor outer flowpath. This probe was used

to monitor the characteristic frequencies and fluctuations of the engine
combustor.
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388



Peanut

Simplex

\\ ,[

Hago

Development

Shroud Air

,x_J< % \\ , \,"_

,<" _

Figure 218. Comparison of Test Rig and Prototype Fuel

Nozzle Tips.

389



ORIGINAL PAGE i_

OF POOR QUALITY

Outer Row No. 1 Thermocouples

I__ I. 52 cm
(0.60 in.)

& _ A--A ,,
Item No. 324 f_ 325 326

Location CW ALF* (351 °) _ (357 °) (O°)

*Clockwise, Aft Looking Forward

A- A--&
Item No. _ 323 321 322

Location _(45°) _ (48 °) (51 °)

1.52 cm

(0.60 in. )
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Figure 220. Engine Combustor Instrumentation Layout.

391



ORIGINAL PAGE LR

OF POOR QUALITY

Outer Row No. 3 Thermocouples

A A Am
Item No. 331 332 333

Location CW ALF (354 °) (357 °) (0 °)

p © ©Item No. 334 335 336

I Location CW ALF (48 ° ) (51 °) (54 °)

1.65 cm

(0.65 in.)

Figure 221. Engine Combustor Instrumentation Layout.

392



or _olj_,-,,rv:_-"::-,,

Inner Row No. 1 Thermocouples

Item No.

Location CW ALF.

I
Item No.

Location CW ALF (246 = )

I

& &__A

369 370(156 ° ) (156 ° )

371 372 373

(249 =) (252 ° )

Q

1.52 cm

0.60 in.

Figure 222. Engine Combustor Instrumentation Layout.

393



ORIGINAL PACE I_

OF POOR QUALITY

Inner Row No. 2 Thermocouples

i.!8 cm
(0.70 in.)

A_---A--&.

) 0 0 0 (
Item No. 374 375 376

Location CW Alf* (156 ° ) (159 ° ) (162 ° )

Item No. 377 378 379

Location CW ALF (252 ° ) (255 ° ) (258 ° )

*Clockwise, Aft Looking Forward

Figure 223. Engine Combustor Instrumentation Layout.

3 9,1



OF ;_,_ • ._,,%!.11_

Inner Row No. 3 Thermocouples

©
--_ A AI

380 381 382 Item No.

(150 °) _153_)(156°)_ cati°n CW AL_

383 384 385 Item No.

(246 ° ) (249 ° ) (252 ° ) Location CW ALF

I 1.78 cm
(0.70 in.)

Figure 224. Engine Combustor Instrumentation Layout.

395



ORIGINAL PAGE |$

OF POOR QUALITY

t

O .PI

tO tO

o_

% o 0 0 o u
•,4 _ I_ .o .,4

o

\°

=
0

=
o

o_

=

=

0

g_

t_

0

=
.,H

=

¢q
¢q

o

39:3



OF POOf_ QUALi'i¥

Degree

60

240

264

___Item_ I

No.

__ Hot Side

339337341 _ __Cold Side

__ Item
x-----Degree No.

60 338

240 340

264 342

Item

No.

275 277

274 276

(60 ° ) (240 ° )

Outer Dome:

• Static Pressure (4 Total)

A Thermocouple (6 Total)

Cold Sidle
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The ground start ignition results obtained on the E 3 engine combustor are

presented in Figure 230. The pilot stage demonstrated excellent ignition and

lean extinction characteristics. Considerable margin was demonstrated against

the E 3 ground start cycle fuel schedule with or without compressor bleed

down to 30% corrected core engine speed. It is interesting to note that these

results are very similar to the pilot stage ignition characteristics demon-

strated at atmospheric inlet pressure conditions. The anticipated improvement

at true cycle inlet pressure was not demonstrated. This is most probably

related to the differences in the fuel spray characteristics between the

engine fuel nozzle assemblies used in this test and the test rig nozzle assem-

blies used in the atmospheric test.

As anticipated, test data from the main stage suggests that it will not

be possible to achieve main stage ignition within the steady-state FPS cycle

fuel schedule at engine power levels up to 10% of sea level takeoff thrust.

However, taking into consideration the additional fuel available on the engine

accel schedule, staging this combustor while on this accel schedule should be

possible at the 10% power operating condition. The lean extinction character-

istics of the main stage are sufficiently good to allow staged combustor oper-

ation at conditions as low as 4% ground idle presuming that the engine decels

to that operating condition from a point where main stage crossfire can occur.

The idle emissions results obtained using the engine fuel nozzle assem-

blies are presented in Figure 231. As observed from this figure, the engine

combustion system achieved exceptionally low levels of CO and HC emissions at

both the 4% and 6% ground idle operating conditions. At the 4% ground idle

design point (f/a = 0.0123), a CO emission level of 18.2 g/kg (18.2 Ib/1000

Ib) of fuel, and an HC emission level of 1.7 g/kg (1.7 Ib/1000 ib) of fuel

were demonstrated. At the 6% ground idle design point (f/a = 0.0113), the

levels demonstrated were 10.8 g/kg (10.8 Ib/1000 ib) of fuel, and 0.8 g/kg

(0.8 Ib/1000 Ib) of fuel, respectively for CO and HC emissions. These levels

are substantially below CO and HC emissions levels estimated as necessary to

satisfy the E 3 Program EPAP design goals. Both emissions levels remain at the

goal levels or below at combustor fuel-air ratios from 0.009 to 0.0145.
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Idle emissions results obtained using the array of peanut and standard

test rig fuel nozzles are presented in Figure 232. This testing was pre-

maturely terminated because of a failure in the gas sampling traverse system.

Sufficient data was obtained to make the comparison at the 6% ground idle oper-

ating condition. The peanut-type fuel nozzles demonstrated CO and HC emissions

levels lower than levels obtained from the standard test rig nozzles at fuel-

air ratios above 0.0110. This supports results previously obtained from E 3

sector combustor subcomponent testing. One of the interesting outcomes of

this test involves the difference in fuel-air ratio at which each nozzle type

demonstrated the minimum CO emission level. The engine nozzle assemblies

achieved a minimum CO level of 10.5 g/kg (10.5 Ib/1000 ib) of fuel at a fuel-

air ratio of 0.0118; for the peanut nozzles 12.5 g/kg (12.5 Ib/1000 ib) of

fuel obtained at a fuel-air ratio of 0.0138; and for the standard test rig

nozzles, 15.5 g/kg (15.5 Ib/1000 ib) of fuel obtained at 0.0129. This could

be related to the differences in the fuel spray angle characteristics of each

nozzle type. The peanut nozzles and the engine nozzle assemblies are known

to have wider fuel spray angles than the standard rig nozzles. An anticipated

result of this fact is the observed lesser sensitivity of the CO emissions to

fuel-air ratio demonstrated with these two nozzle types.

Emissions were measured at the 30% power (approach), operating condition

at pilot-to-total fuel splits of 1.0, 0.5, 0.4, and 0.3. The effects of these

fuel staging modes on the measured CO, HC, and NO x are presented in Table

LIII. The expected trend of low CO and HC emissions and high NO x emissions

at the pilot only operating mode is evident. In the staged operating mode,

the NO x levels are reduced, but the CO and HC emission levels increased sub-

stantially. This trend has been observed in previous testing of the E 3

development combustor. In the staged operating mode at the 30% power oper-

ating condition, the low FPS design cycle overall combustor fuel-air ratio of

0.0140 creates very lean fuel-air mixtures in both domes. These lean primary

zone conditions cause low combustion efficiencies resulting in the high CO and

HC emissions levels. Another contributing factor may involve the fuel spray

quality from the engine nozzle assemblies. At fuel flow levels associated

with this operating condition and staging mode, the secondary fuel system of

the pilot and main stage duplex nozzle tips have just opened. This situation

often produces larger fuel droplets mixed in with the nozzle tip fuel spray.
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Table LIII. Emissions Results at 30% Approach

Power Operation.

E1 - g/kg (ibm/lO00 Ib)

Combustor Operating Mode CO 11C NO x

Pilot Only 2.1 0.i 16.0

50/50 Fuel Split 66.9 13.2 6.1

40/60 Fuel Split 71.7 8.8 5.2

30/70 Fuel Split 83.0 8.0 5.4
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All CO and HC emissions levels measured at the simulated high power oper-

atin_ conditions were adiusted for the scaled down inlet conditions associ-

ated with the inability of the facility to provide the actual design cycle

inlet conditions. The adjusted CO and HC emissions levels as well as those

measured at the lower power operating conditions are plotted against the com-

bustor inlet temperature along the E 3 FPS design cycle in Figure 233. In

this figure, the design fuel split at the higher power operating condition is

considered to be 40/60. The impact of staging is clearly illustrated in this

figure.

Measured NO x emission levels obtained in the staged combustor mode at

operating conditions from 30% power up to the simulated sea level takeoff are

plotted against the E 3 design cycle severity parameter in Figure 234. The

resulting correlation yields an NO x emission index of 27.8 g/kg (27.8 Ib/lO00

Ib) of fuel at the E 3 FPS SLTO condition. This level is considerably above

the target level of 17.5 g/kg of fuel estimated as being required to satisfy

the E 3 NO x EPAP goal, and well above the satisfactory levels previously demon-

strated with the Baseline and Mod I development combustor configurations.

Slightly lower NO x levels are obtained by establishing the off-design 30/70

fuel split. A potential explanation involves the main stage primary dilution

flow levels and will be addressed in more detail later in the text. The

adjusted NO x emission levels as well as those measured at the lower power

operating conditions are plotted against the combustor inlet temperature along

the E 3 FPS design cycle in Figure 235. The design fuel split at the higher

power operating conditions is considered to be 40/60.

The EPA parameter number, based on the EPA landing/takeoff cycle for CO,

HC, and NO x emissions were generated for various combustor operating mode

combinations along the E 3 FPS design cycle operating line. These EPAP results

are compared to the E 3 Program goals in Table LIV. In the pilot only opera-

ting mode at the 30% power condition, the CO and HC levels satisfy the require-

ments with margin for both 4% and 6% thrust at ground idle. However, the NO x

levels exceed the requirements by 40% or more depending on the pilot-to-main

stage fuel split selected at the higher power operating conditions. Operating

the combustor in the staged mode at the 30% power condition provides some

reduction in NO x levels. However, reductions of at least 20% are yet required
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Table LIV. E 3 Engine Combustor EPAP Results.

• FPS Design Cycle (Steady-State SLS)

4% Ground-ldle Pilot Only at Approach

40/60 Split at Climb and SLTO

4% Ground-ldle 40/60 Split at Approach

40/60 Split at Climb and SLTO

4% Ground-ldle Pilot Only at Approach

30/70 Split at Climb and SLTO

4% Ground-ldle 30/70 Split at Approach

30/70 Split at Climb and SLTO

EPAP - Thrust-hr-Cycle

co Hc
g/kg (Ibm/1000 ib)

2.45 0.22 4.97

7.09 0.80 4.25

2.45 0.22 4.73

7.84 0.74 4.03

6% Ground-ldle Pilot Only at Approach 1.58 0. Ii 4.66

40/60 Split at Climb and SLTO

6% Ground-Idle 40/60 Split at Approach 5.76 0.63 4.02

40/60 Split at Climb and SLTO

6% Ground-Idle Pilot Only Approach 1.58 0. Ii 4.46

30/70 Split at Climb and SLTO

6% Ground-Idle 30/70 Split at Approach 6.44 0.58 3.82

30/70 Split at Climb and SLTO

E 3 Program Goals 3.00 0.40 3.00
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to satisfy the requirement. In addition, the COand HC levels increase sig-
nificantly, and no longer satisfy or closely approach the requirements.

Smokelevels obtained are presented along with the combustor operatinB

conditions at which they were measured in Table LV. The highest smokelevel

was measuredat the approach operating condition in the pilot only operating

mode. Te_t conditions at this point exactly matched the design cycle opera-

ting conditions. Therefore, the measuredsmokenumberof 16.5 would be repre-
sentative of engine operation at this power setting and combustor operating

mode. Slightly lower smoke levels (smokenumberof 12.8) were measuredat

this sameoperating condition in the staged operating mode. Significantly

lower smoke levels were obtained at the simulated high-power operating condi-

tions. Althou_h somewhathigher levels would be expected at the actual design

cycle conditions at high power, the levels would be well below the E3 Program

smokenumbergoal of 20.

Measuredoverall combustion system total pressure drops are plotted

against the square of the combustor flow function parameter in FiBure 236. A

significant amountof data scatter is evident. Throughout this testing, prob-

lems were incurred with the facility pressure transducer scanning equipment

used to read the combustor exit total pressure. Pretest predictions of the

overall loss were approximately 5.3%. This tends to agree with the upper
bounds of the measureddata obtained. Measuredstatic pressure drops across

the domesindicate a drop of 3.3%across the pilot stage dome,and 2.9% across

the main stage domeat sea level takeoff operating conditions. Static pres-

sure drops across the liners were between 1.1%and 1.4% for the forward panels,

and between 1.5% and 2.8% for the aft panels. Static pressure drops across

the centerbody structure we re 3.2%on the pilot stage side and 2.3% on the

main stage side.

Using the measuredcombustor static pressures and measuredcombustor flow

areas, an estimate of the combustor airflow distribution was generated and

presented in Appendix E. The combustor flow areas were measuredon a flow

calibration test stand as part of the pretest checkout of the E3 combustor

hardware. For comparison purposes, the estimated flow levels are shownwith

the design levels in Figure 237. Key areas of discrepancy occur in the pri-

mary zone of both the pilot stage and main stage. Pilot stage swirl cup and
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primary dilution flow levels are considerably above the design intent, while

the main stage swirl cup and inner liner primary dilution Panel i and Panel 2

cooling flows are below the design intent. The lower swirl cup flow and pri-

mary dilution flow in the main stage is most likely responsible for the high

NO x emission levels demonstrated. This redistribution of the airflow reflects

the higher pressure drops measured in the pilot dome annulus. One explanation

may be higher than expected pressure losses in the diffuser inner flowstream

resulting from combustor inner flowpath airflow levels higher than the dif-

fuser design intent. No diffuser performance data was obtained during this

test to substantiate this.

Combustor metal temperatures measured during this test are presented in

FiEures 238 through 247. The locations of these thermocouples can be obtained

by identifying the item number and then locating that item number on the

instrumentation illustrations presented in Figures 219 through 229. Indicated

liner peak metal temperatures at the design point (pilot-to-total fuel split

of 0.4) simulated SLTO operating conditions are compared to estimated tempera-

tures based on the design airflow distribution in Figure 248. As observed,

the highest liner temDerature occurred on the inner liner Row I and 2 shingles.

These hot spots are located directly in-line with a swirl cup. The calculated

estimated airflow distribution indicated that both panels had cooling flow

levels considerably below the design intent. However, this condition cannot

be applied to explain the higher-than-anticipated temperatures on outer liner

Row I and 2 shingles. Despite pretest apprehension, the centerbody structure

did not exhibit excessively high metal temperatures. This is credited to the

increased _ooling flow levels incorporated into the design and the application

of thermal barrier coating to the exposed surfaces prior to the emissions test.

None of the indicated combustor metal temperatures should pose a problem

during upcoming core and fan engine testing. Estimates have been made that

suggest that inner liner Panel i shingle temperature would increase to 1270 K

(1820 ° F) at full engine cycle operating conditions. The other temperatures

would be expected to show similar increases.

7.8.4 Concluding Remarks

The component test results of the E3 engine combustor testing are very

satisfactory. The combustor achieved almost all of the design objectives
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established in the combustor development program. The high NO x levels rep-

resent the only shortcoming in what was an excellent overall performance demon-

stration.

Besides improving the NO x characteristics, two other areas stand out

as requiring further development. One of these areas involves improving the

main stage crossfire characteristics to permit staging the combustor at ground

idle operating conditions. The other area involves improving the combustion

efficiency at 30% approach power in the staged combustor operating mode to get

the necessary reductions in the CO and HC emissions.

7.9 CONCLUSION AND SUMMARY

During the E 3 full-annular combustor component testing effort, a total of

33 test runs were conducted. These test runs represented ground start igni-

tion, exit temperature performance, and emissions evaluations of ten develop-

ment combustor configurations (six rich main stage designs; four lean main

stage designs), plus the engine combustor configuration. Summaries of these

design configurations and their evaluation results are presented in Tables LVl

and LVII.

The success of this testing/development effort is evidenced by test

results achieved in the component evaluation of the E 3 engine combustor

evolved from this effort. The test results are as follows:

• Ground start ignition with considerable fuel margin at 30% core

speed

• Main stage crossfire at 10% power along the engine accel fuel

schedule

• Exit temperature pattern factor of 0.24

• Excellent emissions at 4% and 6% ground idle conditions

• NO x emissions levels 30% to 40% above the program requirement

• Smoke levels within the program requirement

• Overall total pressure loss near the design goal

• Peak metal temperatures which should pose no problems during engine

operation
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8.0 CONCLUDING REMARKS

The NASA/GE E 3 Combustor Development Program was a very successful com-

ponent development effort. The technology derived from design studies and

development testing efforts evolved into an engine combustion system that

demonstrated excellent overall component performance. Despite the successes,

several performance areas stand out as requiring further development in order

to evolve the design into one which would be totally acceptable for use in

advanced aircraft engine applications.

These areas involve improving the main stage crossfire characteristics to

permit combustor staging at ground idle operation, improving combustion effi-

ciency at the 30% approach power condition while operating the combustor in

the staged mode, and further reducing the high power NO x emissions.

Significantly better performance levels were predicted for the engine

diffuser system than those demonstrated with the combustor component test rig

diffuser. Therefore, the high NO x levels demonstrated in the component (test

rig) evaluation of the engine combustion system are not considered representa-

tive of the E 3 FPS design. From knowledge of the flow characterstics of the

combustor and engine diffuse,- performance predictions, the E 3 FPS combustion

system will satisfy the E 3 Program NO x emission goal as well as the CO and

HC goals. Estimates of the E 3 FPS emissions are presented in terms of the EPA

parameter in Table LVIII.

The engine combustion system has been released to E 3 Evaluation Engi-

neering for incorporation into the core engine CDN assembly buildup. The com-

bustion system will undergo further evaluation as an integral part of the core

and ICLS (l__ntegrated C_ore and L_ow Pressure Spool) configuration of the E 3

later in 1982. It is currently planned to obtain emissions data as part of

the overall core engine system evaluations. Some metal temperature and pres-

sure data will also be obtained during the core engine testing effort.
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Table LVIII. Estimated EPAP Numbers for E 3 FPS Combustion System.

Program Ground Idle at 4% F n, Ground Idle at 6% Fn,

Goal EPAP Percent Margin EPAP Percent Mar$in

CO 3.00 2.45 23 1.58 90

HC 0.40 0.22 82 0.II 364

NO x 3.00 2.98 I 2.80 7

EPAP ibm/1000 ib Thrust-hr Cycle

E 3 FPS Sea Level Static Std Day Operat[o_ Cycle

Pilot Only at Approach Power
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APPENDIX A

LOCATION AND NUMBERING OF E 3 ANNULAR RIG INSTRUMENTATION
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APPENDIX B

COMBUSTOR SPLIT DUCT DIFFUSER PERFORMANCE DATA

This appendix presents static pressure recovery curves for each of

the individual passage test runs with the three inlet velocity profiles

for the E3 combustor inlet diffuser as shown in Figures IB through 15B.
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APPENDIX C

SUMMARY AND DESCRIPTION OF COMPONENT SECTOR

RIG TEST CONFIGURATIONS AND RESULTS
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APPENDIX D

EMISSIONS CORRECTION AND CORRELATION EQUATIONS

This appendix contains adjustment relationships which were used to cor-

rect the measured emissions data obtained at derated high-power operating

conditions to the actual QCSEE double-annular engine design cycle conditions.

These relations were developed as part of the EPA/CFM56 and NASA/GE ECCP

programs and have generally provided a satisfactory method for adjusting the

emissions levels to the correct combustor inlet conditions as specified in

an engine cycle.

These relations are defined as follows:

1.5 _g/kg fuel(i) EICO(ADJ) = EIco(MEA) (PB/P3 Cycle)

(2) EIHc(ADJ) = EIHc(MEA ) (P3/P3 Cycle) 2"5 ~g/kg fuel

T 3 Cycle T 3
(3) EINo x (ADJ) = EINo x (MEA) (P3 Cycle/P3 )0"37 Exp

I

345

_g/kg fuel

(4) NO x Severity Parameter -

Correlating measured NO x emissions data with this parameter yields a

linear characteristic that allows easy extrapolation of the NOx levels to

high-power operating conditions.

I P3 _0"371VRef*_If/a Pilot_0"65tf/__a Main_ 0"653* J \_I_ O.00854 / \ 0.01586 / Exp 6.29 -53.19Humidity)

Note - The starred values refer to levels at

sea level takeoff operating conditions
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APPENDIX E

UP,IG|NAL PA_E t_

OF POOR QUALITY

ESTIMATED AIRFLOW DISTRIBUTION FOR FULL-ANNULAR CO?fBUSTOR CONFIGURATIONS

\ 1>

Configu-

ration A B C D E F G

Baseline 33.61 6.23 4.13 11.55 33.09 6.62 4.77

Mod I 25.44 6.43 3.38 11.58 38.28 6.94 7.95

Mod II 25.80 5.75 4.30 12.98 28.78 7.60 14.79

Mod III 23.78 5.39 9.72 12.79 23.37 9.46 15.59

Mod IV 23.26 6.13 11.92 12.43 22.53 8.40 15.33

Mod V 23.00 6.18 14.69 ii.ii 22.65 8.47 13.90

Mod VI 23.19 6.13 4.50 11.36 32.42 9.23 13.17

Mod VII 23.20 6.12 4.51 11.41 32.30 9.23 13.23

Engine 24.80 6.51 4.10 13.18 30.99 8.88 11.54
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APPENDIX F

DEVELOPMENT ANNULAR COMBUSTOR TEST SUMMARY

This appendix contains test data summaries for all development

combustor configurations and the engine combustor tested for component

evaluation.
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